The image presents a series of trigonometric problems. 1. Transform $\sin x + \cos x$ and $3\sin x - \sqrt{3}\cos x$ into the form $r\sin(x+\alpha)$, where $r>0$ and $-\pi < \alpha \le \pi$.

TrigonometryTrigonometric IdentitiesTrigonometric EquationsTrigonometric InequalitiesSum-to-Product FormulasAngle Addition FormulasMaximum and Minimum Values
2025/6/24

1. Problem Description

The image presents a series of trigonometric problems.

1. Transform $\sin x + \cos x$ and $3\sin x - \sqrt{3}\cos x$ into the form $r\sin(x+\alpha)$, where $r>0$ and $-\pi < \alpha \le \pi$.

2. Solve the following equations and inequalities for $0 \le x < 2\pi$:

* sin2x=2cosx\sin 2x = 2\cos x
* cos2x+cosx0\cos 2x + \cos x \ge 0
* cosx+cos3x=0\cos x + \cos 3x = 0
* cosx+3(sinx+1)0\cos x + \sqrt{3}(\sin x + 1) \ge 0

3. Evaluate the following expressions:

* sin10sin70+sin130\sin 10^{\circ} - \sin 70^{\circ} + \sin 130^{\circ}
* sin55sin35cos80+cos40\frac{\sin 55^{\circ} \sin 35^{\circ}}{\cos 80^{\circ} + \cos 40^{\circ}}

4. Given $f(x) = \cos^2 x + 2\sqrt{3} \cos x \sin x + 3\sin^2 x$:

* Transform f(x)f(x) into the form asin2x+bcos2x+ca\sin 2x + b\cos 2x + c, where aa, bb, and cc are constants.
* Find the maximum and minimum values of f(x)f(x) for 0xπ0 \le x \le \pi.

2. Solution Steps

(1) Transform sinx+cosx\sin x + \cos x into rsin(x+α)r\sin(x+\alpha).
r=12+12=2r = \sqrt{1^2 + 1^2} = \sqrt{2}
α\alpha satisfies cosα=12\cos \alpha = \frac{1}{\sqrt{2}} and sinα=12\sin \alpha = \frac{1}{\sqrt{2}}, so α=π4\alpha = \frac{\pi}{4}.
Therefore, sinx+cosx=2sin(x+π4)\sin x + \cos x = \sqrt{2} \sin(x + \frac{\pi}{4}).
(2) Transform 3sinx3cosx3\sin x - \sqrt{3}\cos x into rsin(x+α)r\sin(x+\alpha).
r=32+(3)2=9+3=12=23r = \sqrt{3^2 + (-\sqrt{3})^2} = \sqrt{9 + 3} = \sqrt{12} = 2\sqrt{3}
α\alpha satisfies cosα=323=32\cos \alpha = \frac{3}{2\sqrt{3}} = \frac{\sqrt{3}}{2} and sinα=323=12\sin \alpha = \frac{-\sqrt{3}}{2\sqrt{3}} = -\frac{1}{2}, so α=π6\alpha = -\frac{\pi}{6}.
Therefore, 3sinx3cosx=23sin(xπ6)3\sin x - \sqrt{3}\cos x = 2\sqrt{3}\sin(x - \frac{\pi}{6}).
(3) sin2x=2cosx\sin 2x = 2\cos x
2sinxcosx=2cosx2\sin x \cos x = 2\cos x
2sinxcosx2cosx=02\sin x \cos x - 2\cos x = 0
2cosx(sinx1)=02\cos x (\sin x - 1) = 0
cosx=0\cos x = 0 or sinx=1\sin x = 1
If cosx=0\cos x = 0, then x=π2,3π2x = \frac{\pi}{2}, \frac{3\pi}{2}.
If sinx=1\sin x = 1, then x=π2x = \frac{\pi}{2}.
Thus, x=π2,3π2x = \frac{\pi}{2}, \frac{3\pi}{2}.
(4) cos2x+cosx0\cos 2x + \cos x \ge 0
2cos2x1+cosx02\cos^2 x - 1 + \cos x \ge 0
2cos2x+cosx102\cos^2 x + \cos x - 1 \ge 0
(2cosx1)(cosx+1)0(2\cos x - 1)(\cos x + 1) \ge 0
Since cosx+10\cos x + 1 \ge 0, we need 2cosx102\cos x - 1 \ge 0 or cosx+1=0\cos x + 1 = 0.
If cosx+1=0\cos x + 1 = 0, then cosx=1\cos x = -1, so x=πx = \pi.
If 2cosx102\cos x - 1 \ge 0, then cosx12\cos x \ge \frac{1}{2}, so 0xπ30 \le x \le \frac{\pi}{3} or 5π3x<2π\frac{5\pi}{3} \le x < 2\pi.
Thus, 0xπ30 \le x \le \frac{\pi}{3}, x=πx = \pi, or 5π3x<2π\frac{5\pi}{3} \le x < 2\pi.
(5) cosx+cos3x=0\cos x + \cos 3x = 0
2cos(x+3x2)cos(x3x2)=02\cos(\frac{x+3x}{2})\cos(\frac{x-3x}{2}) = 0
2cos2xcos(x)=02\cos 2x \cos(-x) = 0
2cos2xcosx=02\cos 2x \cos x = 0
cos2x=0\cos 2x = 0 or cosx=0\cos x = 0
If cosx=0\cos x = 0, x=π2,3π2x = \frac{\pi}{2}, \frac{3\pi}{2}.
If cos2x=0\cos 2x = 0, 2x=π2,3π2,5π2,7π22x = \frac{\pi}{2}, \frac{3\pi}{2}, \frac{5\pi}{2}, \frac{7\pi}{2}, so x=π4,3π4,5π4,7π4x = \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4}.
Thus, x=π4,π2,3π4,5π4,3π2,7π4x = \frac{\pi}{4}, \frac{\pi}{2}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{3\pi}{2}, \frac{7\pi}{4}.
(6) cosx+3(sinx+1)0\cos x + \sqrt{3}(\sin x + 1) \ge 0
cosx+3sinx+30\cos x + \sqrt{3}\sin x + \sqrt{3} \ge 0
2(12cosx+32sinx)+302(\frac{1}{2}\cos x + \frac{\sqrt{3}}{2}\sin x) + \sqrt{3} \ge 0
2sin(x+π6)+302\sin(x + \frac{\pi}{6}) + \sqrt{3} \ge 0
sin(x+π6)32\sin(x + \frac{\pi}{6}) \ge -\frac{\sqrt{3}}{2}
Since 0x<2π0 \le x < 2\pi, we have π6x+π6<2π+π6\frac{\pi}{6} \le x + \frac{\pi}{6} < 2\pi + \frac{\pi}{6}.
x+π6[π6,5π3][11π3,13π6)x + \frac{\pi}{6} \in [\frac{\pi}{6}, \frac{5\pi}{3}] \cup [\frac{11\pi}{3}, \frac{13\pi}{6})
x+π6[π6,5π3][17π6,2π+π6)x + \frac{\pi}{6} \in [\frac{\pi}{6}, \frac{5\pi}{3}] \cup [\frac{17\pi}{6}, 2\pi + \frac{\pi}{6} )
x[0,3π2][8π3,2π)x \in [0, \frac{3\pi}{2}] \cup [\frac{8\pi}{3}, 2\pi)
So 0x3π20 \le x \le \frac{3\pi}{2} or 5π2x<2π\frac{5\pi}{2} \le x < 2\pi.
(7) sin10sin70+sin130\sin 10^{\circ} - \sin 70^{\circ} + \sin 130^{\circ}
sin10+(sin130sin70)=sin10+2cos(130+702)sin(130702)\sin 10^{\circ} + (\sin 130^{\circ} - \sin 70^{\circ}) = \sin 10^{\circ} + 2\cos(\frac{130^{\circ}+70^{\circ}}{2})\sin(\frac{130^{\circ}-70^{\circ}}{2})
=sin10+2cos100sin30=sin10+2(sin10)(12)=sin10sin10=0= \sin 10^{\circ} + 2\cos 100^{\circ} \sin 30^{\circ} = \sin 10^{\circ} + 2(-\sin 10^{\circ}) (\frac{1}{2}) = \sin 10^{\circ} - \sin 10^{\circ} = 0
(8) sin55sin35cos80+cos40\frac{\sin 55^{\circ} \sin 35^{\circ}}{\cos 80^{\circ} + \cos 40^{\circ}}
sin55sin35=sin55cos55=12sin110=12sin70\sin 55^{\circ} \sin 35^{\circ} = \sin 55^{\circ} \cos 55^{\circ} = \frac{1}{2} \sin 110^{\circ} = \frac{1}{2} \sin 70^{\circ}
cos80+cos40=2cos(80+402)cos(80402)=2cos60cos20=2(12)cos20=cos20\cos 80^{\circ} + \cos 40^{\circ} = 2\cos(\frac{80^{\circ}+40^{\circ}}{2})\cos(\frac{80^{\circ}-40^{\circ}}{2}) = 2\cos 60^{\circ} \cos 20^{\circ} = 2(\frac{1}{2})\cos 20^{\circ} = \cos 20^{\circ}
=cos20=sin70= \cos 20^{\circ} = \sin 70^{\circ}
Therefore, sin55sin35cos80+cos40=12sin70sin70=12\frac{\sin 55^{\circ} \sin 35^{\circ}}{\cos 80^{\circ} + \cos 40^{\circ}} = \frac{\frac{1}{2}\sin 70^{\circ}}{\sin 70^{\circ}} = \frac{1}{2}
(9) f(x)=cos2x+23cosxsinx+3sin2xf(x) = \cos^2 x + 2\sqrt{3} \cos x \sin x + 3\sin^2 x
cos2x=1+cos2x2\cos^2 x = \frac{1 + \cos 2x}{2}
sin2x=1cos2x2\sin^2 x = \frac{1 - \cos 2x}{2}
23cosxsinx=3sin2x2\sqrt{3}\cos x \sin x = \sqrt{3}\sin 2x
f(x)=1+cos2x2+3sin2x+3(1cos2x2)=12+12cos2x+3sin2x+3232cos2xf(x) = \frac{1 + \cos 2x}{2} + \sqrt{3}\sin 2x + 3(\frac{1 - \cos 2x}{2}) = \frac{1}{2} + \frac{1}{2}\cos 2x + \sqrt{3}\sin 2x + \frac{3}{2} - \frac{3}{2}\cos 2x
f(x)=3sin2xcos2x+2f(x) = \sqrt{3}\sin 2x - \cos 2x + 2
(10) f(x)=3sin2xcos2x+2f(x) = \sqrt{3}\sin 2x - \cos 2x + 2
f(x)=2(32sin2x12cos2x)+2=2sin(2xπ6)+2f(x) = 2(\frac{\sqrt{3}}{2}\sin 2x - \frac{1}{2}\cos 2x) + 2 = 2\sin(2x - \frac{\pi}{6}) + 2
0xπ0 \le x \le \pi, so 02x2π0 \le 2x \le 2\pi, π62xπ62ππ6=11π6-\frac{\pi}{6} \le 2x - \frac{\pi}{6} \le 2\pi - \frac{\pi}{6} = \frac{11\pi}{6}.
The maximum value of sin(2xπ6)\sin(2x - \frac{\pi}{6}) is 1, which occurs when 2xπ6=π22x - \frac{\pi}{6} = \frac{\pi}{2}, so 2x=2π32x = \frac{2\pi}{3}, and x=π3x = \frac{\pi}{3}.
The minimum value of sin(2xπ6)\sin(2x - \frac{\pi}{6}) is -1, which occurs when 2xπ6=3π22x - \frac{\pi}{6} = \frac{3\pi}{2}, so 2x=5π32x = \frac{5\pi}{3}, and x=5π6x = \frac{5\pi}{6}.
The maximum value of f(x)f(x) is 2(1)+2=42(1) + 2 = 4.
The minimum value of f(x)f(x) is 2(1)+2=02(-1) + 2 = 0.

3. Final Answer

(1) 2sin(x+π4)\sqrt{2}\sin(x + \frac{\pi}{4})
(2) 23sin(xπ6)2\sqrt{3}\sin(x - \frac{\pi}{6})
(3) x=π2,3π2x = \frac{\pi}{2}, \frac{3\pi}{2}
(4) 0xπ30 \le x \le \frac{\pi}{3}, x=πx = \pi, or 5π3x<2π\frac{5\pi}{3} \le x < 2\pi
(5) x=π4,π2,3π4,5π4,3π2,7π4x = \frac{\pi}{4}, \frac{\pi}{2}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{3\pi}{2}, \frac{7\pi}{4}
(6) 0x3π20 \le x \le \frac{3\pi}{2}
(7) 00
(8) 12\frac{1}{2}
(9) f(x)=3sin2xcos2x+2f(x) = \sqrt{3}\sin 2x - \cos 2x + 2
(10) Maximum: 4, Minimum: 0

Related problems in "Trigonometry"

We are asked to evaluate two trigonometric expressions: (7) $sin(10^{\circ}) - sin(70^{\circ}) + sin...

Trigonometric IdentitiesSum-to-Product FormulasProduct-to-Sum FormulasTrigonometric Simplification
2025/6/24

We are asked to solve three equations and one inequality for $x$ in the interval $0 \le x < 2\pi$. T...

Trigonometric EquationsTrigonometric InequalitiesDouble Angle FormulasSum-to-Product FormulasIntervals
2025/6/24

The problem requires us to rewrite the given trigonometric expressions in the form $r \sin(x+\alpha)...

TrigonometryTrigonometric IdentitiesAmplitude and Phase ShiftSine Function
2025/6/24

Given that $tan(\alpha) = -\frac{4}{3}$ and $\alpha$ is in the second quadrant, find the value of $c...

TrigonometryTrigonometric FunctionsTangentCosineQuadrantsPythagorean Identity
2025/6/16

Given that $\tan \alpha = 3$, we need to find the value of the expression $\frac{\sin \alpha - \cos ...

TrigonometryTangentSineCosineTrigonometric IdentitiesExpression Evaluation
2025/6/14

We are asked to find the value of $P = \tan 43^{\circ} \tan 44^{\circ} \tan 45^{\circ} \tan 46^{\cir...

TrigonometryTangent FunctionAngle IdentitiesTrigonometric Simplification
2025/6/1

Solve the equation $\sin(x - \frac{\pi}{6}) = - \frac{\sqrt{2}}{2}$ for $x$.

Trigonometric EquationsSine FunctionSolving EquationsRadians
2025/5/29

Solve the trigonometric equation $\sin(x - \frac{\pi}{6}) = -\frac{\sqrt{2}}{2}$ for $x$.

Trigonometric EquationsSine FunctionAngles
2025/5/29

The problem asks to simplify the equation $y = \sin^2 x + \cos^2 x$.

Trigonometric IdentitiesSimplification
2025/5/29

The problem asks to evaluate the expression $A = \sin(\pi/4) - 2\cos(\pi - \pi/2)$.

TrigonometrySineCosineAngle CalculationExact Values
2025/5/29