We are asked to evaluate two trigonometric expressions: (7) $sin(10^{\circ}) - sin(70^{\circ}) + sin(130^{\circ})$ (8) $\frac{sin(55^{\circ}) sin(35^{\circ})}{cos(80^{\circ}) + cos(40^{\circ})}$

TrigonometryTrigonometric IdentitiesSum-to-Product FormulasProduct-to-Sum FormulasTrigonometric Simplification
2025/6/24

1. Problem Description

We are asked to evaluate two trigonometric expressions:
(7) sin(10)sin(70)+sin(130)sin(10^{\circ}) - sin(70^{\circ}) + sin(130^{\circ})
(8) sin(55)sin(35)cos(80)+cos(40)\frac{sin(55^{\circ}) sin(35^{\circ})}{cos(80^{\circ}) + cos(40^{\circ})}

2. Solution Steps

(7) We have sin(10)sin(70)+sin(130)sin(10^{\circ}) - sin(70^{\circ}) + sin(130^{\circ}).
Since sin(130)=sin(180130)=sin(50)sin(130^{\circ}) = sin(180^{\circ} - 130^{\circ}) = sin(50^{\circ}), the expression becomes sin(10)sin(70)+sin(50)sin(10^{\circ}) - sin(70^{\circ}) + sin(50^{\circ}).
We can rewrite this as sin(10)+sin(50)sin(70)sin(10^{\circ}) + sin(50^{\circ}) - sin(70^{\circ}).
Using the sum-to-product formula, sin(A)+sin(B)=2sin(A+B2)cos(AB2)sin(A) + sin(B) = 2 sin(\frac{A+B}{2}) cos(\frac{A-B}{2}),
we have sin(10)+sin(50)=2sin(10+502)cos(10502)=2sin(30)cos(20)sin(10^{\circ}) + sin(50^{\circ}) = 2 sin(\frac{10^{\circ} + 50^{\circ}}{2}) cos(\frac{10^{\circ} - 50^{\circ}}{2}) = 2 sin(30^{\circ}) cos(-20^{\circ}).
Since sin(30)=12sin(30^{\circ}) = \frac{1}{2} and cos(20)=cos(20)cos(-20^{\circ}) = cos(20^{\circ}), we get 2(12)cos(20)=cos(20)2 (\frac{1}{2}) cos(20^{\circ}) = cos(20^{\circ}).
Therefore, the expression becomes cos(20)sin(70)cos(20^{\circ}) - sin(70^{\circ}).
Since sin(70)=cos(9070)=cos(20)sin(70^{\circ}) = cos(90^{\circ} - 70^{\circ}) = cos(20^{\circ}), the expression is cos(20)cos(20)=0cos(20^{\circ}) - cos(20^{\circ}) = 0.
(8) We have sin(55)sin(35)cos(80)+cos(40)\frac{sin(55^{\circ}) sin(35^{\circ})}{cos(80^{\circ}) + cos(40^{\circ})}.
Using the product-to-sum formula, sin(A)sin(B)=12[cos(AB)cos(A+B)]sin(A) sin(B) = \frac{1}{2} [cos(A-B) - cos(A+B)], we have
sin(55)sin(35)=12[cos(5535)cos(55+35)]=12[cos(20)cos(90)]=12[cos(20)0]=12cos(20)sin(55^{\circ}) sin(35^{\circ}) = \frac{1}{2} [cos(55^{\circ} - 35^{\circ}) - cos(55^{\circ} + 35^{\circ})] = \frac{1}{2} [cos(20^{\circ}) - cos(90^{\circ})] = \frac{1}{2} [cos(20^{\circ}) - 0] = \frac{1}{2} cos(20^{\circ}).
Using the sum-to-product formula, cos(A)+cos(B)=2cos(A+B2)cos(AB2)cos(A) + cos(B) = 2 cos(\frac{A+B}{2}) cos(\frac{A-B}{2}), we have
cos(80)+cos(40)=2cos(80+402)cos(80402)=2cos(60)cos(20)cos(80^{\circ}) + cos(40^{\circ}) = 2 cos(\frac{80^{\circ} + 40^{\circ}}{2}) cos(\frac{80^{\circ} - 40^{\circ}}{2}) = 2 cos(60^{\circ}) cos(20^{\circ}).
Since cos(60)=12cos(60^{\circ}) = \frac{1}{2}, we have 2(12)cos(20)=cos(20)2 (\frac{1}{2}) cos(20^{\circ}) = cos(20^{\circ}).
Therefore, the expression becomes 12cos(20)cos(20)=12\frac{\frac{1}{2} cos(20^{\circ})}{cos(20^{\circ})} = \frac{1}{2}.

3. Final Answer

(7) 0
(8) 12\frac{1}{2}

Related problems in "Trigonometry"

We are asked to solve three equations and one inequality for $x$ in the interval $0 \le x < 2\pi$. T...

Trigonometric EquationsTrigonometric InequalitiesDouble Angle FormulasSum-to-Product FormulasIntervals
2025/6/24

The image presents a series of trigonometric problems. 1. Transform $\sin x + \cos x$ and $3\sin x ...

Trigonometric IdentitiesTrigonometric EquationsTrigonometric InequalitiesSum-to-Product FormulasAngle Addition FormulasMaximum and Minimum Values
2025/6/24

The problem requires us to rewrite the given trigonometric expressions in the form $r \sin(x+\alpha)...

TrigonometryTrigonometric IdentitiesAmplitude and Phase ShiftSine Function
2025/6/24

Given that $tan(\alpha) = -\frac{4}{3}$ and $\alpha$ is in the second quadrant, find the value of $c...

TrigonometryTrigonometric FunctionsTangentCosineQuadrantsPythagorean Identity
2025/6/16

Given that $\tan \alpha = 3$, we need to find the value of the expression $\frac{\sin \alpha - \cos ...

TrigonometryTangentSineCosineTrigonometric IdentitiesExpression Evaluation
2025/6/14

We are asked to find the value of $P = \tan 43^{\circ} \tan 44^{\circ} \tan 45^{\circ} \tan 46^{\cir...

TrigonometryTangent FunctionAngle IdentitiesTrigonometric Simplification
2025/6/1

Solve the equation $\sin(x - \frac{\pi}{6}) = - \frac{\sqrt{2}}{2}$ for $x$.

Trigonometric EquationsSine FunctionSolving EquationsRadians
2025/5/29

Solve the trigonometric equation $\sin(x - \frac{\pi}{6}) = -\frac{\sqrt{2}}{2}$ for $x$.

Trigonometric EquationsSine FunctionAngles
2025/5/29

The problem asks to simplify the equation $y = \sin^2 x + \cos^2 x$.

Trigonometric IdentitiesSimplification
2025/5/29

The problem asks to evaluate the expression $A = \sin(\pi/4) - 2\cos(\pi - \pi/2)$.

TrigonometrySineCosineAngle CalculationExact Values
2025/5/29