We are asked to solve three equations and one inequality for $x$ in the interval $0 \le x < 2\pi$. The problems are: (3) $\sin 2x = 2 \cos x$ (4) $\cos 2x + \cos x \ge 0$ (5) $\cos x + \cos 3x = 0$ (6) $\cos x + \sqrt{3}(\sin x + 1) \ge 0$

TrigonometryTrigonometric EquationsTrigonometric InequalitiesDouble Angle FormulasSum-to-Product FormulasIntervals
2025/6/24

1. Problem Description

We are asked to solve three equations and one inequality for xx in the interval 0x<2π0 \le x < 2\pi. The problems are:
(3) sin2x=2cosx\sin 2x = 2 \cos x
(4) cos2x+cosx0\cos 2x + \cos x \ge 0
(5) cosx+cos3x=0\cos x + \cos 3x = 0
(6) cosx+3(sinx+1)0\cos x + \sqrt{3}(\sin x + 1) \ge 0

2. Solution Steps

(3) sin2x=2cosx\sin 2x = 2 \cos x
Using the double angle formula, sin2x=2sinxcosx\sin 2x = 2 \sin x \cos x.
2sinxcosx=2cosx2 \sin x \cos x = 2 \cos x
2sinxcosx2cosx=02 \sin x \cos x - 2 \cos x = 0
2cosx(sinx1)=02 \cos x (\sin x - 1) = 0
Thus, cosx=0\cos x = 0 or sinx=1\sin x = 1.
If cosx=0\cos x = 0, then x=π2,3π2x = \frac{\pi}{2}, \frac{3\pi}{2}.
If sinx=1\sin x = 1, then x=π2x = \frac{\pi}{2}.
Therefore, the solutions are x=π2,3π2x = \frac{\pi}{2}, \frac{3\pi}{2}.
(4) cos2x+cosx0\cos 2x + \cos x \ge 0
Using the double angle formula, cos2x=2cos2x1\cos 2x = 2 \cos^2 x - 1.
2cos2x1+cosx02 \cos^2 x - 1 + \cos x \ge 0
2cos2x+cosx102 \cos^2 x + \cos x - 1 \ge 0
(2cosx1)(cosx+1)0(2 \cos x - 1)(\cos x + 1) \ge 0
We have two cases:
Case 1: 2cosx102 \cos x - 1 \ge 0 and cosx+10\cos x + 1 \ge 0
cosx12\cos x \ge \frac{1}{2} and cosx1\cos x \ge -1. Since cosx\cos x is always greater or equal to -1, we only need to consider cosx12\cos x \ge \frac{1}{2}. The solutions for this are 0xπ30 \le x \le \frac{\pi}{3} and 5π3x<2π\frac{5\pi}{3} \le x < 2\pi.
Case 2: 2cosx102 \cos x - 1 \le 0 and cosx+10\cos x + 1 \le 0
cosx12\cos x \le \frac{1}{2} and cosx1\cos x \le -1. Then cosx=1\cos x = -1, so x=πx = \pi.
Combining the cases, we have 0xπ30 \le x \le \frac{\pi}{3}, x=πx = \pi, and 5π3x<2π\frac{5\pi}{3} \le x < 2\pi.
(5) cosx+cos3x=0\cos x + \cos 3x = 0
Using the sum-to-product formula, cosA+cosB=2cosA+B2cosAB2\cos A + \cos B = 2 \cos \frac{A+B}{2} \cos \frac{A-B}{2}.
cosx+cos3x=2cosx+3x2cosx3x2=2cos2xcos(x)=2cos2xcosx=0\cos x + \cos 3x = 2 \cos \frac{x+3x}{2} \cos \frac{x-3x}{2} = 2 \cos 2x \cos (-x) = 2 \cos 2x \cos x = 0.
So cos2x=0\cos 2x = 0 or cosx=0\cos x = 0.
If cos2x=0\cos 2x = 0, then 2x=π2,3π2,5π2,7π22x = \frac{\pi}{2}, \frac{3\pi}{2}, \frac{5\pi}{2}, \frac{7\pi}{2}. Thus, x=π4,3π4,5π4,7π4x = \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4}.
If cosx=0\cos x = 0, then x=π2,3π2x = \frac{\pi}{2}, \frac{3\pi}{2}.
Therefore, the solutions are x=π4,3π4,5π4,7π4,π2,3π2x = \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4}, \frac{\pi}{2}, \frac{3\pi}{2}.
(6) cosx+3(sinx+1)0\cos x + \sqrt{3}(\sin x + 1) \ge 0
cosx+3sinx+30\cos x + \sqrt{3} \sin x + \sqrt{3} \ge 0
cosx+3sinx3\cos x + \sqrt{3} \sin x \ge - \sqrt{3}
Divide by 2:
12cosx+32sinx32\frac{1}{2} \cos x + \frac{\sqrt{3}}{2} \sin x \ge - \frac{\sqrt{3}}{2}
cosπ3cosx+sinπ3sinx32\cos \frac{\pi}{3} \cos x + \sin \frac{\pi}{3} \sin x \ge - \frac{\sqrt{3}}{2}
cos(xπ3)32\cos(x - \frac{\pi}{3}) \ge - \frac{\sqrt{3}}{2}
The interval where cosθ32\cos \theta \ge -\frac{\sqrt{3}}{2} is 5π6θ5π6-\frac{5\pi}{6} \le \theta \le \frac{5\pi}{6}.
Thus, 5π6xπ35π6-\frac{5\pi}{6} \le x - \frac{\pi}{3} \le \frac{5\pi}{6}.
Adding π3\frac{\pi}{3} to all sides:
5π6+π3x5π6+π3-\frac{5\pi}{6} + \frac{\pi}{3} \le x \le \frac{5\pi}{6} + \frac{\pi}{3}
5π6+2π6x5π6+2π6-\frac{5\pi}{6} + \frac{2\pi}{6} \le x \le \frac{5\pi}{6} + \frac{2\pi}{6}
3π6x7π6-\frac{3\pi}{6} \le x \le \frac{7\pi}{6}
π2x7π6-\frac{\pi}{2} \le x \le \frac{7\pi}{6}
Since 0x<2π0 \le x < 2\pi, we have 0x7π60 \le x \le \frac{7\pi}{6}.

3. Final Answer

(3) x=π2,3π2x = \frac{\pi}{2}, \frac{3\pi}{2}
(4) 0xπ3,x=π,5π3x<2π0 \le x \le \frac{\pi}{3}, x = \pi, \frac{5\pi}{3} \le x < 2\pi
(5) x=π4,3π4,5π4,7π4,π2,3π2x = \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4}, \frac{\pi}{2}, \frac{3\pi}{2}
(6) 0x7π60 \le x \le \frac{7\pi}{6}

Related problems in "Trigonometry"

We are asked to evaluate two trigonometric expressions: (7) $sin(10^{\circ}) - sin(70^{\circ}) + sin...

Trigonometric IdentitiesSum-to-Product FormulasProduct-to-Sum FormulasTrigonometric Simplification
2025/6/24

The image presents a series of trigonometric problems. 1. Transform $\sin x + \cos x$ and $3\sin x ...

Trigonometric IdentitiesTrigonometric EquationsTrigonometric InequalitiesSum-to-Product FormulasAngle Addition FormulasMaximum and Minimum Values
2025/6/24

The problem requires us to rewrite the given trigonometric expressions in the form $r \sin(x+\alpha)...

TrigonometryTrigonometric IdentitiesAmplitude and Phase ShiftSine Function
2025/6/24

Given that $tan(\alpha) = -\frac{4}{3}$ and $\alpha$ is in the second quadrant, find the value of $c...

TrigonometryTrigonometric FunctionsTangentCosineQuadrantsPythagorean Identity
2025/6/16

Given that $\tan \alpha = 3$, we need to find the value of the expression $\frac{\sin \alpha - \cos ...

TrigonometryTangentSineCosineTrigonometric IdentitiesExpression Evaluation
2025/6/14

We are asked to find the value of $P = \tan 43^{\circ} \tan 44^{\circ} \tan 45^{\circ} \tan 46^{\cir...

TrigonometryTangent FunctionAngle IdentitiesTrigonometric Simplification
2025/6/1

Solve the equation $\sin(x - \frac{\pi}{6}) = - \frac{\sqrt{2}}{2}$ for $x$.

Trigonometric EquationsSine FunctionSolving EquationsRadians
2025/5/29

Solve the trigonometric equation $\sin(x - \frac{\pi}{6}) = -\frac{\sqrt{2}}{2}$ for $x$.

Trigonometric EquationsSine FunctionAngles
2025/5/29

The problem asks to simplify the equation $y = \sin^2 x + \cos^2 x$.

Trigonometric IdentitiesSimplification
2025/5/29

The problem asks to evaluate the expression $A = \sin(\pi/4) - 2\cos(\pi - \pi/2)$.

TrigonometrySineCosineAngle CalculationExact Values
2025/5/29