The problem requires us to rewrite the given trigonometric expressions in the form $r \sin(x+\alpha)$, where $r > 0$ and $-\pi < \alpha \le \pi$. The two expressions are: (1) $\sin x + \cos x$ (2) $3\sin x - \sqrt{3} \cos x$

TrigonometryTrigonometryTrigonometric IdentitiesAmplitude and Phase ShiftSine Function
2025/6/24

1. Problem Description

The problem requires us to rewrite the given trigonometric expressions in the form rsin(x+α)r \sin(x+\alpha), where r>0r > 0 and π<απ-\pi < \alpha \le \pi. The two expressions are:
(1) sinx+cosx\sin x + \cos x
(2) 3sinx3cosx3\sin x - \sqrt{3} \cos x

2. Solution Steps

(1) sinx+cosx\sin x + \cos x
We want to express this in the form rsin(x+α)=r(sinxcosα+cosxsinα)=(rcosα)sinx+(rsinα)cosxr\sin(x+\alpha) = r(\sin x \cos \alpha + \cos x \sin \alpha) = (r\cos \alpha)\sin x + (r\sin \alpha)\cos x.
Comparing coefficients, we have
rcosα=1r\cos \alpha = 1
rsinα=1r\sin \alpha = 1
Squaring and adding the two equations, we get
r2cos2α+r2sin2α=12+12r^2\cos^2 \alpha + r^2\sin^2 \alpha = 1^2 + 1^2
r2(cos2α+sin2α)=2r^2(\cos^2 \alpha + \sin^2 \alpha) = 2
r2=2r^2 = 2
Since r>0r>0, we have r=2r = \sqrt{2}.
Then cosα=12\cos \alpha = \frac{1}{\sqrt{2}} and sinα=12\sin \alpha = \frac{1}{\sqrt{2}}.
Thus, α=π4\alpha = \frac{\pi}{4}, which satisfies π<απ-\pi < \alpha \le \pi.
Therefore, sinx+cosx=2sin(x+π4)\sin x + \cos x = \sqrt{2}\sin(x + \frac{\pi}{4}).
(2) 3sinx3cosx3\sin x - \sqrt{3} \cos x
We want to express this in the form rsin(x+α)=r(sinxcosα+cosxsinα)=(rcosα)sinx+(rsinα)cosxr\sin(x+\alpha) = r(\sin x \cos \alpha + \cos x \sin \alpha) = (r\cos \alpha)\sin x + (r\sin \alpha)\cos x.
Comparing coefficients, we have
rcosα=3r\cos \alpha = 3
rsinα=3r\sin \alpha = -\sqrt{3}
Squaring and adding the two equations, we get
r2cos2α+r2sin2α=32+(3)2r^2\cos^2 \alpha + r^2\sin^2 \alpha = 3^2 + (-\sqrt{3})^2
r2(cos2α+sin2α)=9+3r^2(\cos^2 \alpha + \sin^2 \alpha) = 9 + 3
r2=12r^2 = 12
Since r>0r>0, we have r=12=23r = \sqrt{12} = 2\sqrt{3}.
Then cosα=323=32\cos \alpha = \frac{3}{2\sqrt{3}} = \frac{\sqrt{3}}{2} and sinα=323=12\sin \alpha = \frac{-\sqrt{3}}{2\sqrt{3}} = -\frac{1}{2}.
Thus, α=π6\alpha = -\frac{\pi}{6}, which satisfies π<απ-\pi < \alpha \le \pi.
Therefore, 3sinx3cosx=23sin(xπ6)3\sin x - \sqrt{3} \cos x = 2\sqrt{3}\sin(x - \frac{\pi}{6}).

3. Final Answer

(1) 2sin(x+π4)\sqrt{2}\sin(x + \frac{\pi}{4})
(2) 23sin(xπ6)2\sqrt{3}\sin(x - \frac{\pi}{6})

Related problems in "Trigonometry"

We are asked to evaluate two trigonometric expressions: (7) $sin(10^{\circ}) - sin(70^{\circ}) + sin...

Trigonometric IdentitiesSum-to-Product FormulasProduct-to-Sum FormulasTrigonometric Simplification
2025/6/24

We are asked to solve three equations and one inequality for $x$ in the interval $0 \le x < 2\pi$. T...

Trigonometric EquationsTrigonometric InequalitiesDouble Angle FormulasSum-to-Product FormulasIntervals
2025/6/24

The image presents a series of trigonometric problems. 1. Transform $\sin x + \cos x$ and $3\sin x ...

Trigonometric IdentitiesTrigonometric EquationsTrigonometric InequalitiesSum-to-Product FormulasAngle Addition FormulasMaximum and Minimum Values
2025/6/24

Given that $tan(\alpha) = -\frac{4}{3}$ and $\alpha$ is in the second quadrant, find the value of $c...

TrigonometryTrigonometric FunctionsTangentCosineQuadrantsPythagorean Identity
2025/6/16

Given that $\tan \alpha = 3$, we need to find the value of the expression $\frac{\sin \alpha - \cos ...

TrigonometryTangentSineCosineTrigonometric IdentitiesExpression Evaluation
2025/6/14

We are asked to find the value of $P = \tan 43^{\circ} \tan 44^{\circ} \tan 45^{\circ} \tan 46^{\cir...

TrigonometryTangent FunctionAngle IdentitiesTrigonometric Simplification
2025/6/1

Solve the equation $\sin(x - \frac{\pi}{6}) = - \frac{\sqrt{2}}{2}$ for $x$.

Trigonometric EquationsSine FunctionSolving EquationsRadians
2025/5/29

Solve the trigonometric equation $\sin(x - \frac{\pi}{6}) = -\frac{\sqrt{2}}{2}$ for $x$.

Trigonometric EquationsSine FunctionAngles
2025/5/29

The problem asks to simplify the equation $y = \sin^2 x + \cos^2 x$.

Trigonometric IdentitiesSimplification
2025/5/29

The problem asks to evaluate the expression $A = \sin(\pi/4) - 2\cos(\pi - \pi/2)$.

TrigonometrySineCosineAngle CalculationExact Values
2025/5/29