We use the triple angle formulas:
cos3x=4cos3x−3cosx sin3x=3sinx−4sin3x Substitute the triple angle formulas into the equation:
cosxcos3x−(4cos3x−3cosx)+sinxsin3x+(3sinx−4sin3x)=3 Simplify the expression:
cosxcos3x−4cos3x+3cosx+sinxsin3x+3sinx−4sin3x=3 cosx−3cos3x+3cosx+sinx−3sin3x+3sinx=3 Assuming cosx=0 and sinx=0, we can divide by cosx and sinx respectively: −3cos2x+3+(−3sin2x+3)=3 −3cos2x+3−3sin2x+3=3 −3(cos2x+sin2x)+6=3 Since cos2x+sin2x=1: −3(1)+6=3 This means that the equation is an identity, and it holds true for all x such that cosx=0 and sinx=0. Therefore, x=k2π for k∈Z (integers). x can be any real number except integer multiples of 2π.