Solve the trigonometric equation: $\frac{\cos^3 x - \cos 3x}{\cos x} + \frac{\sin^3 x + \sin 3x}{\sin x} = 3$

TrigonometryTrigonometric EquationsTriple Angle FormulasTrigonometric IdentitiesSolution of Equations
2025/4/25

1. Problem Description

Solve the trigonometric equation:
cos3xcos3xcosx+sin3x+sin3xsinx=3\frac{\cos^3 x - \cos 3x}{\cos x} + \frac{\sin^3 x + \sin 3x}{\sin x} = 3

2. Solution Steps

We use the triple angle formulas:
cos3x=4cos3x3cosx\cos 3x = 4\cos^3 x - 3\cos x
sin3x=3sinx4sin3x\sin 3x = 3\sin x - 4\sin^3 x
Substitute the triple angle formulas into the equation:
cos3x(4cos3x3cosx)cosx+sin3x+(3sinx4sin3x)sinx=3\frac{\cos^3 x - (4\cos^3 x - 3\cos x)}{\cos x} + \frac{\sin^3 x + (3\sin x - 4\sin^3 x)}{\sin x} = 3
Simplify the expression:
cos3x4cos3x+3cosxcosx+sin3x+3sinx4sin3xsinx=3\frac{\cos^3 x - 4\cos^3 x + 3\cos x}{\cos x} + \frac{\sin^3 x + 3\sin x - 4\sin^3 x}{\sin x} = 3
3cos3x+3cosxcosx+3sin3x+3sinxsinx=3\frac{-3\cos^3 x + 3\cos x}{\cos x} + \frac{-3\sin^3 x + 3\sin x}{\sin x} = 3
Assuming cosx0\cos x \neq 0 and sinx0\sin x \neq 0, we can divide by cosx\cos x and sinx\sin x respectively:
3cos2x+3+(3sin2x+3)=3-3\cos^2 x + 3 + (-3\sin^2 x + 3) = 3
3cos2x+33sin2x+3=3-3\cos^2 x + 3 - 3\sin^2 x + 3 = 3
3(cos2x+sin2x)+6=3-3(\cos^2 x + \sin^2 x) + 6 = 3
Since cos2x+sin2x=1\cos^2 x + \sin^2 x = 1:
3(1)+6=3-3(1) + 6 = 3
3+6=3-3 + 6 = 3
3=33 = 3
This means that the equation is an identity, and it holds true for all xx such that cosx0\cos x \neq 0 and sinx0\sin x \neq 0.
Therefore, xkπ2x \neq k\frac{\pi}{2} for kZk \in \mathbb{Z} (integers).
xx can be any real number except integer multiples of π2\frac{\pi}{2}.

3. Final Answer

xkπ2x \neq k\frac{\pi}{2}, where kk is an integer.

Related problems in "Trigonometry"

We are given that $\sin{\alpha} = \frac{4}{5}$ and $\frac{\pi}{2} \le \alpha < \pi$. We need to find...

TrigonometrySine FunctionAngle Addition FormulaTrigonometric Identities
2025/4/27

The problem asks to simplify the expression $\sin(2\alpha) \cdot \frac{\cot(\alpha)}{2}$.

Trigonometric IdentitiesSimplificationSineCosineCotangent
2025/4/27

We need to solve the trigonometric equation $\cos(\theta)(2\sin(\theta) - 1) = 0$ for $\theta$.

Trigonometric EquationsSineCosineTrigonometric IdentitiesSolving Equations
2025/4/26

Simplify the trigonometric expression $\sin^2x + \sin x \cos^2 x$.

Trigonometric IdentitiesSimplificationSineCosine
2025/4/26

The problem is to simplify the expression $\sin^2(x) + \sin(x)\cos(x)$.

Trigonometric IdentitiesSimplificationSineCosine
2025/4/26

The problem is to simplify the expression $\sin^2(x) + \sin(x)\cos(x)$.

Trigonometric IdentitiesSimplificationSineCosine
2025/4/26

The problem requires us to prove the following trigonometric identity: $tan(x+y) - tan(x) - tan(y) =...

Trigonometric IdentitiesTangent Addition FormulaProof
2025/4/25

Prove the trigonometric identity: $2(\frac{1}{sin2x} + cot2x) = cot\frac{x}{2} - tan\frac{x}{2}$

Trigonometric IdentitiesProofSimplificationcotangenttangentsinecosine
2025/4/24

We are asked to simplify the expression: $\frac{\sin x + \sin 2x + \sin 3x}{\cos x + \cos 2x + \cos ...

TrigonometryTrigonometric IdentitiesSum-to-Product FormulasTangent FunctionEquation Solving
2025/4/22

We are asked to solve the trigonometric equation $\tan x + \cot x = 2(\sin 2x + \cos 2x)$.

Trigonometric EquationsTrigonometric IdentitiesSolution of Equations
2025/4/22