We are asked to calculate $\sin(x + \frac{\pi}{6})$ given that $\sin(x) = \frac{4}{5}$ and $\frac{\pi}{2} \le x \le \pi$.

TrigonometryTrigonometryAngle Sum FormulaSine FunctionUnit Circle
2025/5/3

1. Problem Description

We are asked to calculate sin(x+π6)\sin(x + \frac{\pi}{6}) given that sin(x)=45\sin(x) = \frac{4}{5} and π2xπ\frac{\pi}{2} \le x \le \pi.

2. Solution Steps

First, we use the angle sum formula for sine:
sin(a+b)=sin(a)cos(b)+cos(a)sin(b)\sin(a+b) = \sin(a) \cos(b) + \cos(a) \sin(b)
Applying this formula to our problem:
sin(x+π6)=sin(x)cos(π6)+cos(x)sin(π6)\sin(x + \frac{\pi}{6}) = \sin(x) \cos(\frac{\pi}{6}) + \cos(x) \sin(\frac{\pi}{6})
We know that sin(x)=45\sin(x) = \frac{4}{5}, cos(π6)=32\cos(\frac{\pi}{6}) = \frac{\sqrt{3}}{2}, and sin(π6)=12\sin(\frac{\pi}{6}) = \frac{1}{2}. We need to find cos(x)\cos(x).
We know that sin2(x)+cos2(x)=1\sin^2(x) + \cos^2(x) = 1. Therefore, cos2(x)=1sin2(x)\cos^2(x) = 1 - \sin^2(x).
Substituting sin(x)=45\sin(x) = \frac{4}{5}, we have:
cos2(x)=1(45)2=11625=925\cos^2(x) = 1 - (\frac{4}{5})^2 = 1 - \frac{16}{25} = \frac{9}{25}
So, cos(x)=±925=±35\cos(x) = \pm \sqrt{\frac{9}{25}} = \pm \frac{3}{5}.
Since π2xπ\frac{\pi}{2} \le x \le \pi, xx is in the second quadrant, where cosine is negative. Thus, cos(x)=35\cos(x) = -\frac{3}{5}.
Now, we substitute all the values into the angle sum formula:
sin(x+π6)=(45)(32)+(35)(12)=4310310=43310\sin(x + \frac{\pi}{6}) = (\frac{4}{5}) (\frac{\sqrt{3}}{2}) + (-\frac{3}{5}) (\frac{1}{2}) = \frac{4\sqrt{3}}{10} - \frac{3}{10} = \frac{4\sqrt{3} - 3}{10}

3. Final Answer

sin(x+π6)=43310\sin(x + \frac{\pi}{6}) = \frac{4\sqrt{3} - 3}{10}

Related problems in "Trigonometry"

Simplify the expression $\sin(2\alpha) \cdot \frac{\cot(\alpha)}{2}$.

TrigonometryTrigonometric IdentitiesSimplificationDouble Angle FormulaCotangent
2025/5/3

We need to find the exact value of $\sin(\frac{3\pi}{4})$.

TrigonometrySine FunctionUnit CircleAngle CalculationReference Angle
2025/5/1

Determine the quadrant in which $\csc \theta > 0$ and $\sec \theta < 0$.

Trigonometric FunctionsQuadrantsSineCosineCosecantSecant
2025/5/1

We need to find the value of $sec(\frac{11\pi}{6})$.

TrigonometrySecant FunctionUnit CircleAngle ConversionReference Angle
2025/5/1

The problem asks us to analyze the graph of the function $y = \tan(\theta - \frac{\pi}{2})$. We are ...

Trigonometric FunctionsTangent FunctionGraphingPeriodAsymptotesTransformations
2025/4/30

We are given that $\sin 3y = \cos 2y$ and $0^{\circ} \le y \le 90^{\circ}$. We are asked to find the...

TrigonometryTrigonometric EquationsSineCosine
2025/4/29

We are given that $\tan x = 1$, where $0^\circ \le x \le 90^\circ$. We are asked to evaluate $\frac{...

TrigonometryTrigonometric IdentitiesTangent FunctionSine FunctionCosine FunctionAngle Evaluation
2025/4/29

Prove the following trigonometric identity: $\frac{1 + \sin\theta - \cos\theta}{1 + \sin\theta + \co...

Trigonometric IdentitiesTrigonometric EquationsProof
2025/4/29

The problem asks us to find an angle given its tangent value. We are given that $\tan(x) = 0.4774$ a...

TrigonometryTangentArctangentAngle Calculation
2025/4/28

Prove the trigonometric identity: $tan(\frac{\theta}{2}) + cot(\frac{\theta}{2}) = 2csc(\theta)$.

Trigonometric IdentitiesDouble Angle FormulaTangentCotangentCosecantProof
2025/4/28