First, we use the angle sum formula for sine:
sin(a+b)=sin(a)cos(b)+cos(a)sin(b) Applying this formula to our problem:
sin(x+6π)=sin(x)cos(6π)+cos(x)sin(6π) We know that sin(x)=54, cos(6π)=23, and sin(6π)=21. We need to find cos(x). We know that sin2(x)+cos2(x)=1. Therefore, cos2(x)=1−sin2(x). Substituting sin(x)=54, we have: cos2(x)=1−(54)2=1−2516=259 So, cos(x)=±259=±53. Since 2π≤x≤π, x is in the second quadrant, where cosine is negative. Thus, cos(x)=−53. Now, we substitute all the values into the angle sum formula:
sin(x+6π)=(54)(23)+(−53)(21)=1043−103=1043−3