The problem consists of three independent subproblems, each dealing with geometric transformations. 1) Given two parallel lines $\Delta$ and $\Delta'$, a point $M$ and its images $M_1 = S_{\Delta}(M)$ and $M' = S_{\Delta'}(M_1)$, where $S$ denotes reflection. $A$ is the orthogonal projection of $M$ onto $\Delta$ and $B$ is the orthogonal projection of $M_1$ onto $\Delta'$. Express the vector $\vec{MM'}$ in terms of $\vec{AB}$. Then, deduce that $M' = t_{2\vec{AB}}(M)$ and $S_{\Delta'} \circ S_{\Delta} = t_{2\vec{AB}}$, where $t$ denotes translation. 2) Given two distinct points $I$ and $J$, a point $N$ and its images $N_1 = S_I(N)$ and $N' = S_J(N_1)$, where $S$ denotes reflection with respect to a point. Express the vector $\vec{NN'}$ in terms of $\vec{IJ}$. Then, deduce that $N' = t_{2\vec{IJ}}(N)$ and $S_J \circ S_I = t_{2\vec{IJ}}$. 3) Given two non-null vectors $\vec{u}$ and $\vec{v}$, a point $T$ and its images $T_1 = t_{\vec{v}}(T)$ and $T' = t_{\vec{u}}(T_1)$, where $t$ denotes translation. Express the vector $\vec{TT'}$ in terms of $\vec{u}$ and $\vec{v}$. Then, deduce that $T' = t_{\vec{u}+\vec{v}}(T)$ and $t_{\vec{u}} \circ t_{\vec{v}} = t_{\vec{u}+\vec{v}}$.

GeometryGeometric TransformationsReflectionsTranslationsVectorsComposition of Transformations
2025/3/18

1. Problem Description

The problem consists of three independent subproblems, each dealing with geometric transformations.
1) Given two parallel lines Δ\Delta and Δ\Delta', a point MM and its images M1=SΔ(M)M_1 = S_{\Delta}(M) and M=SΔ(M1)M' = S_{\Delta'}(M_1), where SS denotes reflection. AA is the orthogonal projection of MM onto Δ\Delta and BB is the orthogonal projection of M1M_1 onto Δ\Delta'. Express the vector MM\vec{MM'} in terms of AB\vec{AB}. Then, deduce that M=t2AB(M)M' = t_{2\vec{AB}}(M) and SΔSΔ=t2ABS_{\Delta'} \circ S_{\Delta} = t_{2\vec{AB}}, where tt denotes translation.
2) Given two distinct points II and JJ, a point NN and its images N1=SI(N)N_1 = S_I(N) and N=SJ(N1)N' = S_J(N_1), where SS denotes reflection with respect to a point. Express the vector NN\vec{NN'} in terms of IJ\vec{IJ}. Then, deduce that N=t2IJ(N)N' = t_{2\vec{IJ}}(N) and SJSI=t2IJS_J \circ S_I = t_{2\vec{IJ}}.
3) Given two non-null vectors u\vec{u} and v\vec{v}, a point TT and its images T1=tv(T)T_1 = t_{\vec{v}}(T) and T=tu(T1)T' = t_{\vec{u}}(T_1), where tt denotes translation. Express the vector TT\vec{TT'} in terms of u\vec{u} and v\vec{v}. Then, deduce that T=tu+v(T)T' = t_{\vec{u}+\vec{v}}(T) and tutv=tu+vt_{\vec{u}} \circ t_{\vec{v}} = t_{\vec{u}+\vec{v}}.

2. Solution Steps

1)
a) We have M1=SΔ(M)M_1 = S_{\Delta}(M). Thus MA=AM1\vec{MA} = \vec{AM_1} and AA is the midpoint of MM1MM_1. Also M=SΔ(M1)M' = S_{\Delta'}(M_1), so M1B=BM\vec{M_1B} = \vec{BM'}, and BB is the midpoint of M1MM_1M'. Thus:
MM=MM1+M1M\vec{MM'} = \vec{MM_1} + \vec{M_1M'}
Since AA is the midpoint of MM1MM_1, we have MA=AM1\vec{MA} = \vec{AM_1}, so MM1=2MA=2AM\vec{MM_1} = 2\vec{MA} = -2\vec{AM}.
Since BB is the midpoint of M1MM_1M', we have M1B=BM\vec{M_1B} = \vec{BM'}, so M1M=2M1B=2BM1\vec{M_1M'} = 2\vec{M_1B} = 2\vec{BM_1}.
Therefore, MM=2MA+2M1B\vec{MM'} = 2\vec{MA} + 2\vec{M_1B}. Also, AB=AM1+M1B=MA+M1B\vec{AB} = \vec{AM_1} + \vec{M_1B} = -\vec{MA} + \vec{M_1B}.
Since Δ\Delta and Δ\Delta' are parallel, MA\vec{MA} and M1B\vec{M_1B} are parallel, so MM=2MA+2M1B=2AM+2BM1=2(BM1AM)\vec{MM'} = 2\vec{MA} + 2\vec{M_1B} = -2\vec{AM} + 2\vec{BM_1} = 2(\vec{BM_1} - \vec{AM}). Since AM1\vec{AM_1} is parallel to AB\vec{AB}, we can write MM=2AB\vec{MM'} = 2\vec{AB}.
b) From the above, we have MM=2AB\vec{MM'} = 2\vec{AB}, so M=t2AB(M)M' = t_{2\vec{AB}}(M). Also, M=SΔ(M1)=SΔ(SΔ(M))M' = S_{\Delta'}(M_1) = S_{\Delta'} (S_{\Delta}(M)). Thus SΔ(SΔ(M))=t2AB(M)S_{\Delta'} (S_{\Delta}(M)) = t_{2\vec{AB}}(M), so SΔSΔ=t2ABS_{\Delta'} \circ S_{\Delta} = t_{2\vec{AB}}.
2)
a) We have N1=SI(N)N_1 = S_I(N), so NI=IN1\vec{NI} = \vec{IN_1} and II is the midpoint of NN1NN_1. Also N=SJ(N1)N' = S_J(N_1), so N1J=JN\vec{N_1J} = \vec{JN'} and JJ is the midpoint of N1NN_1N'.
NN=NN1+N1N\vec{NN'} = \vec{NN_1} + \vec{N_1N'}
Since II is the midpoint of NN1NN_1, NN1=2NI\vec{NN_1} = 2\vec{NI}.
Since JJ is the midpoint of N1NN_1N', N1N=2N1J\vec{N_1N'} = 2\vec{N_1J}.
NN=2NI+2N1J=2(NI+N1J)=2(NI+N1I+IJ)=2(IJIN1+NI)=2IJ\vec{NN'} = 2\vec{NI} + 2\vec{N_1J} = 2(\vec{NI} + \vec{N_1J}) = 2(\vec{NI} + \vec{N_1I} + \vec{IJ}) = 2(\vec{IJ} - \vec{IN_1} + \vec{NI}) = 2\vec{IJ} because NI=IN1\vec{NI}=\vec{IN_1}. Thus, NN=2IJ\vec{NN'} = 2\vec{IJ}.
b) From the above, NN=2IJ\vec{NN'} = 2\vec{IJ}, so N=t2IJ(N)N' = t_{2\vec{IJ}}(N). Also, N=SJ(N1)=SJ(SI(N))N' = S_J(N_1) = S_J(S_I(N)). Thus SJ(SI(N))=t2IJ(N)S_J(S_I(N)) = t_{2\vec{IJ}}(N), so SJSI=t2IJS_J \circ S_I = t_{2\vec{IJ}}.
3)
a) We have T1=tv(T)T_1 = t_{\vec{v}}(T), so TT1=v\vec{TT_1} = \vec{v}. Also T=tu(T1)T' = t_{\vec{u}}(T_1), so T1T=u\vec{T_1T'} = \vec{u}.
TT=TT1+T1T=v+u=u+v\vec{TT'} = \vec{TT_1} + \vec{T_1T'} = \vec{v} + \vec{u} = \vec{u} + \vec{v}.
b) From the above, TT=u+v\vec{TT'} = \vec{u} + \vec{v}, so T=tu+v(T)T' = t_{\vec{u}+\vec{v}}(T). Also, T=tu(T1)=tu(tv(T))T' = t_{\vec{u}}(T_1) = t_{\vec{u}}(t_{\vec{v}}(T)). Thus tu(tv(T))=tu+v(T)t_{\vec{u}}(t_{\vec{v}}(T)) = t_{\vec{u}+\vec{v}}(T), so tutv=tu+vt_{\vec{u}} \circ t_{\vec{v}} = t_{\vec{u}+\vec{v}}.

3. Final Answer

1) a) MM=2AB\vec{MM'} = 2\vec{AB}
b) SΔSΔ=t2ABS_{\Delta'} \circ S_{\Delta} = t_{2\vec{AB}}
2) a) NN=2IJ\vec{NN'} = 2\vec{IJ}
b) SJSI=t2IJS_J \circ S_I = t_{2\vec{IJ}}
3) a) TT=u+v\vec{TT'} = \vec{u} + \vec{v}
b) tutv=tu+vt_{\vec{u}} \circ t_{\vec{v}} = t_{\vec{u}+\vec{v}}

Related problems in "Geometry"

We are given the area of a square as 81 square meters, and we are asked to find the side length of t...

AreaSquareSide LengthGeometry
2025/7/2

We are asked to find the area of a square, given that its side length is $0.7$ meters. We are asked ...

AreaSquareUnit Conversion
2025/7/2

We are given a shaded shape on a grid. Each square on the grid has a side length of 1 cm. We are ask...

AreaApproximationGridShapes
2025/7/2

The problem states that $Z$ is the centroid of triangle $TRS$. Given that $TO = 7b + 5$, $OR = 13b -...

CentroidTriangleMidpointAlgebraic EquationsLine Segments
2025/7/1

We are given that $m\angle ACT = 15a - 8$ and $m\angle ACB = 74$. Also, S is the incenter of $\trian...

Angle BisectorIncenterTriangleAnglesAlgebraic Manipulation
2025/7/1

$S$ is the circumcenter of triangle $ABC$. $CP = 7x - 1$ and $PB = 6x + 3$. Find the value of $x$ an...

GeometryTriangleCircumcenterMidpointAlgebraic Equations
2025/7/1

We are given a triangle $ABC$ and a point $S$ which is the circumcenter. $CP = 7x - 1$ and $PB = 6x ...

TriangleCircumcenterLine SegmentsAlgebraic Equations
2025/7/1

The problem provides the radius of a circle as $21.5$ cm and a central angle as $316$ degrees. We ne...

CircleArc LengthCircumferenceAngle Measurement
2025/7/1

The problem provides the radius of a circle, $r = 21.5$ cm, and the angle of a sector, $\theta = 316...

CircleSectorArc LengthRadiansAngle Conversion
2025/7/1

The problem asks us to locate the points D, F, E, and G on the graph based on their relative positio...

Coordinate GeometryPointsSpatial ReasoningVisual Estimation
2025/6/30