Let the given equations be:
x2+y2=29 (1) 3x2+25y2=100 (2) Multiply equation (1) by 3:
3(x2+y2)=3(29) 3x2+3y2=87 (3) Subtract equation (3) from equation (2):
(3x2+25y2)−(3x2+3y2)=100−87 y2=2213 Substitute y2=2213 into equation (1): x2+2213=29 x2=29−2213 x2=2229∗22−13=22638−13=22625 Now, solve for x and y:
x=±22625=±2225=±222522 y=±2213=±2213=±2213∗22=±22286 The solutions are:
x=±222522,y=±22286