The problem consists of two parts. Part 1: Convert the given matrix $\begin{bmatrix} 5 & -7 & 1 \\ 6 & -8 & -1 \\ 3 & 2 & 7 \end{bmatrix}$ into an upper triangular matrix. Part 2: Using properties of determinants, prove that $\begin{vmatrix} x+4 & 2x & 2x \\ 2x & x+4 & 2x \\ 2x & 2x & x+4 \end{vmatrix} = (5x+4)(4-x)^2$.

AlgebraLinear AlgebraMatricesDeterminantsMatrix Transformations
2025/6/17

1. Problem Description

The problem consists of two parts.
Part 1: Convert the given matrix [571681327]\begin{bmatrix} 5 & -7 & 1 \\ 6 & -8 & -1 \\ 3 & 2 & 7 \end{bmatrix} into an upper triangular matrix.
Part 2: Using properties of determinants, prove that x+42x2x2xx+42x2x2xx+4=(5x+4)(4x)2\begin{vmatrix} x+4 & 2x & 2x \\ 2x & x+4 & 2x \\ 2x & 2x & x+4 \end{vmatrix} = (5x+4)(4-x)^2.

2. Solution Steps

Part 1: Converting to Upper Triangular Matrix
Let A=[571681327]A = \begin{bmatrix} 5 & -7 & 1 \\ 6 & -8 & -1 \\ 3 & 2 & 7 \end{bmatrix}. We want to transform this matrix into an upper triangular matrix.
Step 1: Make the element in the (2,1) position zero.
Perform the operation R2R265R1R_2 \rightarrow R_2 - \frac{6}{5}R_1.
R2=[6,8,1]65[5,7,1]=[66,8+425,165]=[0,25,115]R_2 = [6, -8, -1] - \frac{6}{5}[5, -7, 1] = [6-6, -8 + \frac{42}{5}, -1 - \frac{6}{5}] = [0, \frac{2}{5}, -\frac{11}{5}].
The new matrix becomes [571025115327]\begin{bmatrix} 5 & -7 & 1 \\ 0 & \frac{2}{5} & -\frac{11}{5} \\ 3 & 2 & 7 \end{bmatrix}.
Step 2: Make the element in the (3,1) position zero.
Perform the operation R3R335R1R_3 \rightarrow R_3 - \frac{3}{5}R_1.
R3=[3,2,7]35[5,7,1]=[33,2+215,735]=[0,315,325]R_3 = [3, 2, 7] - \frac{3}{5}[5, -7, 1] = [3-3, 2 + \frac{21}{5}, 7 - \frac{3}{5}] = [0, \frac{31}{5}, \frac{32}{5}].
The new matrix becomes [5710251150315325]\begin{bmatrix} 5 & -7 & 1 \\ 0 & \frac{2}{5} & -\frac{11}{5} \\ 0 & \frac{31}{5} & \frac{32}{5} \end{bmatrix}.
Step 3: Make the element in the (3,2) position zero.
Perform the operation R3R3312R2R_3 \rightarrow R_3 - \frac{31}{2}R_2.
R3=[0,315,325]312[0,25,115]=[0,315315,325+34110]=[0,0,64+34110]=[0,0,40510]=[0,0,812]R_3 = [0, \frac{31}{5}, \frac{32}{5}] - \frac{31}{2}[0, \frac{2}{5}, -\frac{11}{5}] = [0, \frac{31}{5} - \frac{31}{5}, \frac{32}{5} + \frac{341}{10}] = [0, 0, \frac{64+341}{10}] = [0, 0, \frac{405}{10}] = [0, 0, \frac{81}{2}].
The new matrix becomes [57102511500812]\begin{bmatrix} 5 & -7 & 1 \\ 0 & \frac{2}{5} & -\frac{11}{5} \\ 0 & 0 & \frac{81}{2} \end{bmatrix}.
Part 2: Proving the determinant identity
Let D=x+42x2x2xx+42x2x2xx+4D = \begin{vmatrix} x+4 & 2x & 2x \\ 2x & x+4 & 2x \\ 2x & 2x & x+4 \end{vmatrix}.
Apply C1C1+C2+C3C_1 \rightarrow C_1 + C_2 + C_3.
D=x+4+2x+2x2x2x2x+x+4+2xx+42x2x+2x+x+42xx+4=5x+42x2x5x+4x+42x5x+42xx+4D = \begin{vmatrix} x+4+2x+2x & 2x & 2x \\ 2x+x+4+2x & x+4 & 2x \\ 2x+2x+x+4 & 2x & x+4 \end{vmatrix} = \begin{vmatrix} 5x+4 & 2x & 2x \\ 5x+4 & x+4 & 2x \\ 5x+4 & 2x & x+4 \end{vmatrix}.
Factor out (5x+4)(5x+4) from the first column:
D=(5x+4)12x2x1x+42x12xx+4D = (5x+4)\begin{vmatrix} 1 & 2x & 2x \\ 1 & x+4 & 2x \\ 1 & 2x & x+4 \end{vmatrix}.
Apply R2R2R1R_2 \rightarrow R_2 - R_1 and R3R3R1R_3 \rightarrow R_3 - R_1:
D=(5x+4)12x2x0x+42x000x+42x=(5x+4)12x2x04x0004xD = (5x+4)\begin{vmatrix} 1 & 2x & 2x \\ 0 & x+4-2x & 0 \\ 0 & 0 & x+4-2x \end{vmatrix} = (5x+4)\begin{vmatrix} 1 & 2x & 2x \\ 0 & 4-x & 0 \\ 0 & 0 & 4-x \end{vmatrix}.
Now, we can compute the determinant by expanding along the first column:
D=(5x+4)14x004x=(5x+4)(4x)(4x)=(5x+4)(4x)2D = (5x+4) \cdot 1 \cdot \begin{vmatrix} 4-x & 0 \\ 0 & 4-x \end{vmatrix} = (5x+4) \cdot (4-x)(4-x) = (5x+4)(4-x)^2.

3. Final Answer

Part 1: The upper triangular matrix is [57102511500812]\begin{bmatrix} 5 & -7 & 1 \\ 0 & \frac{2}{5} & -\frac{11}{5} \\ 0 & 0 & \frac{81}{2} \end{bmatrix}.
Part 2: The proof is complete, x+42x2x2xx+42x2x2xx+4=(5x+4)(4x)2\begin{vmatrix} x+4 & 2x & 2x \\ 2x & x+4 & 2x \\ 2x & 2x & x+4 \end{vmatrix} = (5x+4)(4-x)^2.

Related problems in "Algebra"

The problem presents three separate mathematical questions: 1. Find a number that when multiplied b...

Linear EquationsWord ProblemsAge ProblemsRectangle Perimeter
2025/6/17

Sophat is 51 years old, and Rasmei is 21 years old. In how many years will Sophat be twice the age o...

Age ProblemsLinear EquationsWord Problems
2025/6/17

The problem consists of two parts. Part 1: Solve the equation $5(1 + 4e^{0.1x-1}) = 25$ for $x$. Par...

Exponential EquationsLogarithmic EquationsQuadratic EquationsLogarithm PropertiesEquation Solving
2025/6/17

The problem presents a formula for $a_n$, which is $a_n = a_1 \cdot r^{n-1}$. This is the formula fo...

Sequences and SeriesGeometric SequenceFormula
2025/6/17

The image contains several math problems. I will solve "Example 1" and "Related Problem 1". Example ...

SequencesSeriesSummationArithmetic SeriesFormula Derivation
2025/6/17

The problem consists of two questions. Question 1 asks to evaluate several expressions involving exp...

ExponentsRadicalsAlgebraic ExpressionsEquation Solving
2025/6/17

We need to evaluate the expression: $(\frac{-5\sqrt{2}}{\sqrt{6}})(\frac{-\sqrt{7}}{3\sqrt{22}})$.

SimplificationRadicalsRationalizationFractions
2025/6/17

Simplify the expression $-6\sqrt{\frac{3y^2}{16}}$.

SimplificationRadicalsAbsolute ValueExponents
2025/6/17

The problem is to rationalize the denominator of the expression $\frac{-2}{\sqrt[3]{15}}$.

RadicalsRationalizationExponents
2025/6/17

We are asked to evaluate the expression $(3\sqrt{7} - \sqrt{8})^2$.

ExponentsSimplificationRadicals
2025/6/17