Part 1: Converting to Upper Triangular Matrix
Let A = [ 5 − 7 1 6 − 8 − 1 3 2 7 ] A = \begin{bmatrix} 5 & -7 & 1 \\ 6 & -8 & -1 \\ 3 & 2 & 7 \end{bmatrix} A = 5 6 3 − 7 − 8 2 1 − 1 7 . We want to transform this matrix into an upper triangular matrix.
Step 1: Make the element in the (2,1) position zero.
Perform the operation R 2 → R 2 − 6 5 R 1 R_2 \rightarrow R_2 - \frac{6}{5}R_1 R 2 → R 2 − 5 6 R 1 . R 2 = [ 6 , − 8 , − 1 ] − 6 5 [ 5 , − 7 , 1 ] = [ 6 − 6 , − 8 + 42 5 , − 1 − 6 5 ] = [ 0 , 2 5 , − 11 5 ] R_2 = [6, -8, -1] - \frac{6}{5}[5, -7, 1] = [6-6, -8 + \frac{42}{5}, -1 - \frac{6}{5}] = [0, \frac{2}{5}, -\frac{11}{5}] R 2 = [ 6 , − 8 , − 1 ] − 5 6 [ 5 , − 7 , 1 ] = [ 6 − 6 , − 8 + 5 42 , − 1 − 5 6 ] = [ 0 , 5 2 , − 5 11 ] . The new matrix becomes [ 5 − 7 1 0 2 5 − 11 5 3 2 7 ] \begin{bmatrix} 5 & -7 & 1 \\ 0 & \frac{2}{5} & -\frac{11}{5} \\ 3 & 2 & 7 \end{bmatrix} 5 0 3 − 7 5 2 2 1 − 5 11 7 .
Step 2: Make the element in the (3,1) position zero.
Perform the operation R 3 → R 3 − 3 5 R 1 R_3 \rightarrow R_3 - \frac{3}{5}R_1 R 3 → R 3 − 5 3 R 1 . R 3 = [ 3 , 2 , 7 ] − 3 5 [ 5 , − 7 , 1 ] = [ 3 − 3 , 2 + 21 5 , 7 − 3 5 ] = [ 0 , 31 5 , 32 5 ] R_3 = [3, 2, 7] - \frac{3}{5}[5, -7, 1] = [3-3, 2 + \frac{21}{5}, 7 - \frac{3}{5}] = [0, \frac{31}{5}, \frac{32}{5}] R 3 = [ 3 , 2 , 7 ] − 5 3 [ 5 , − 7 , 1 ] = [ 3 − 3 , 2 + 5 21 , 7 − 5 3 ] = [ 0 , 5 31 , 5 32 ] . The new matrix becomes [ 5 − 7 1 0 2 5 − 11 5 0 31 5 32 5 ] \begin{bmatrix} 5 & -7 & 1 \\ 0 & \frac{2}{5} & -\frac{11}{5} \\ 0 & \frac{31}{5} & \frac{32}{5} \end{bmatrix} 5 0 0 − 7 5 2 5 31 1 − 5 11 5 32 .
Step 3: Make the element in the (3,2) position zero.
Perform the operation R 3 → R 3 − 31 2 R 2 R_3 \rightarrow R_3 - \frac{31}{2}R_2 R 3 → R 3 − 2 31 R 2 . R 3 = [ 0 , 31 5 , 32 5 ] − 31 2 [ 0 , 2 5 , − 11 5 ] = [ 0 , 31 5 − 31 5 , 32 5 + 341 10 ] = [ 0 , 0 , 64 + 341 10 ] = [ 0 , 0 , 405 10 ] = [ 0 , 0 , 81 2 ] R_3 = [0, \frac{31}{5}, \frac{32}{5}] - \frac{31}{2}[0, \frac{2}{5}, -\frac{11}{5}] = [0, \frac{31}{5} - \frac{31}{5}, \frac{32}{5} + \frac{341}{10}] = [0, 0, \frac{64+341}{10}] = [0, 0, \frac{405}{10}] = [0, 0, \frac{81}{2}] R 3 = [ 0 , 5 31 , 5 32 ] − 2 31 [ 0 , 5 2 , − 5 11 ] = [ 0 , 5 31 − 5 31 , 5 32 + 10 341 ] = [ 0 , 0 , 10 64 + 341 ] = [ 0 , 0 , 10 405 ] = [ 0 , 0 , 2 81 ] . The new matrix becomes [ 5 − 7 1 0 2 5 − 11 5 0 0 81 2 ] \begin{bmatrix} 5 & -7 & 1 \\ 0 & \frac{2}{5} & -\frac{11}{5} \\ 0 & 0 & \frac{81}{2} \end{bmatrix} 5 0 0 − 7 5 2 0 1 − 5 11 2 81 .
Part 2: Proving the determinant identity
Let D = ∣ x + 4 2 x 2 x 2 x x + 4 2 x 2 x 2 x x + 4 ∣ D = \begin{vmatrix} x+4 & 2x & 2x \\ 2x & x+4 & 2x \\ 2x & 2x & x+4 \end{vmatrix} D = x + 4 2 x 2 x 2 x x + 4 2 x 2 x 2 x x + 4 .
Apply C 1 → C 1 + C 2 + C 3 C_1 \rightarrow C_1 + C_2 + C_3 C 1 → C 1 + C 2 + C 3 . D = ∣ x + 4 + 2 x + 2 x 2 x 2 x 2 x + x + 4 + 2 x x + 4 2 x 2 x + 2 x + x + 4 2 x x + 4 ∣ = ∣ 5 x + 4 2 x 2 x 5 x + 4 x + 4 2 x 5 x + 4 2 x x + 4 ∣ D = \begin{vmatrix} x+4+2x+2x & 2x & 2x \\ 2x+x+4+2x & x+4 & 2x \\ 2x+2x+x+4 & 2x & x+4 \end{vmatrix} = \begin{vmatrix} 5x+4 & 2x & 2x \\ 5x+4 & x+4 & 2x \\ 5x+4 & 2x & x+4 \end{vmatrix} D = x + 4 + 2 x + 2 x 2 x + x + 4 + 2 x 2 x + 2 x + x + 4 2 x x + 4 2 x 2 x 2 x x + 4 = 5 x + 4 5 x + 4 5 x + 4 2 x x + 4 2 x 2 x 2 x x + 4 .
Factor out ( 5 x + 4 ) (5x+4) ( 5 x + 4 ) from the first column: D = ( 5 x + 4 ) ∣ 1 2 x 2 x 1 x + 4 2 x 1 2 x x + 4 ∣ D = (5x+4)\begin{vmatrix} 1 & 2x & 2x \\ 1 & x+4 & 2x \\ 1 & 2x & x+4 \end{vmatrix} D = ( 5 x + 4 ) 1 1 1 2 x x + 4 2 x 2 x 2 x x + 4 .
Apply R 2 → R 2 − R 1 R_2 \rightarrow R_2 - R_1 R 2 → R 2 − R 1 and R 3 → R 3 − R 1 R_3 \rightarrow R_3 - R_1 R 3 → R 3 − R 1 : D = ( 5 x + 4 ) ∣ 1 2 x 2 x 0 x + 4 − 2 x 0 0 0 x + 4 − 2 x ∣ = ( 5 x + 4 ) ∣ 1 2 x 2 x 0 4 − x 0 0 0 4 − x ∣ D = (5x+4)\begin{vmatrix} 1 & 2x & 2x \\ 0 & x+4-2x & 0 \\ 0 & 0 & x+4-2x \end{vmatrix} = (5x+4)\begin{vmatrix} 1 & 2x & 2x \\ 0 & 4-x & 0 \\ 0 & 0 & 4-x \end{vmatrix} D = ( 5 x + 4 ) 1 0 0 2 x x + 4 − 2 x 0 2 x 0 x + 4 − 2 x = ( 5 x + 4 ) 1 0 0 2 x 4 − x 0 2 x 0 4 − x .
Now, we can compute the determinant by expanding along the first column:
D = ( 5 x + 4 ) ⋅ 1 ⋅ ∣ 4 − x 0 0 4 − x ∣ = ( 5 x + 4 ) ⋅ ( 4 − x ) ( 4 − x ) = ( 5 x + 4 ) ( 4 − x ) 2 D = (5x+4) \cdot 1 \cdot \begin{vmatrix} 4-x & 0 \\ 0 & 4-x \end{vmatrix} = (5x+4) \cdot (4-x)(4-x) = (5x+4)(4-x)^2 D = ( 5 x + 4 ) ⋅ 1 ⋅ 4 − x 0 0 4 − x = ( 5 x + 4 ) ⋅ ( 4 − x ) ( 4 − x ) = ( 5 x + 4 ) ( 4 − x ) 2 .