We are asked to evaluate the expression $(3\sqrt{7} - \sqrt{8})^2$.AlgebraExponentsSimplificationRadicals2025/6/171. Problem DescriptionWe are asked to evaluate the expression (37−8)2(3\sqrt{7} - \sqrt{8})^2(37−8)2.2. Solution StepsWe can use the formula (a−b)2=a2−2ab+b2(a-b)^2 = a^2 - 2ab + b^2(a−b)2=a2−2ab+b2 to expand the expression.(37−8)2=(37)2−2(37)(8)+(8)2(3\sqrt{7} - \sqrt{8})^2 = (3\sqrt{7})^2 - 2(3\sqrt{7})(\sqrt{8}) + (\sqrt{8})^2(37−8)2=(37)2−2(37)(8)+(8)2=9⋅7−67⋅8+8= 9 \cdot 7 - 6\sqrt{7 \cdot 8} + 8=9⋅7−67⋅8+8=63−656+8= 63 - 6\sqrt{56} + 8=63−656+8=71−64⋅14= 71 - 6\sqrt{4 \cdot 14}=71−64⋅14=71−6(214)= 71 - 6(2\sqrt{14})=71−6(214)=71−1214= 71 - 12\sqrt{14}=71−12143. Final Answer71−121471 - 12\sqrt{14}71−1214