Given that $x^2 + y^2 + xy = 0$, we want to find the value of $(\frac{x-y}{x})^{80} + (\frac{x-y}{y})^{80}$.

AlgebraComplex NumbersCube Roots of UnityAlgebraic ManipulationPolynomial Equations
2025/6/18

1. Problem Description

Given that x2+y2+xy=0x^2 + y^2 + xy = 0, we want to find the value of (xyx)80+(xyy)80(\frac{x-y}{x})^{80} + (\frac{x-y}{y})^{80}.

2. Solution Steps

From the equation x2+y2+xy=0x^2 + y^2 + xy = 0, we can divide by y2y^2 (assuming y0y \ne 0):
(xy)2+1+xy=0(\frac{x}{y})^2 + 1 + \frac{x}{y} = 0
Let t=xyt = \frac{x}{y}. Then we have t2+t+1=0t^2 + t + 1 = 0.
Using the quadratic formula to solve for tt,
t=1±124(1)(1)2(1)=1±32=1±i32t = \frac{-1 \pm \sqrt{1^2 - 4(1)(1)}}{2(1)} = \frac{-1 \pm \sqrt{-3}}{2} = \frac{-1 \pm i\sqrt{3}}{2}
So, t=1+i32t = \frac{-1 + i\sqrt{3}}{2} or t=1i32t = \frac{-1 - i\sqrt{3}}{2}. These are the two complex cube roots of unity, excluding

1. Let $\omega = \frac{-1 + i\sqrt{3}}{2}$ and $\omega^2 = \frac{-1 - i\sqrt{3}}{2}$.

Thus, xy=ω\frac{x}{y} = \omega or xy=ω2\frac{x}{y} = \omega^2. In either case, ω3=1\omega^3 = 1 and 1+ω+ω2=01 + \omega + \omega^2 = 0.
Case 1: xy=ω\frac{x}{y} = \omega. Then x=ωyx = \omega y.
xyx=ωyyωy=ω1ω=11ω=1ω2\frac{x-y}{x} = \frac{\omega y - y}{\omega y} = \frac{\omega - 1}{\omega} = 1 - \frac{1}{\omega} = 1 - \omega^2.
Since 1+ω+ω2=01 + \omega + \omega^2 = 0, we have 1+ω=ω21 + \omega = -\omega^2, so 1ω2=1x2y21 - \omega^2 = 1 - \frac{x^2}{y^2}.
Also, since 1+ω+ω2=01 + \omega + \omega^2 = 0, we have ω2=1+ω-\omega^2 = 1 + \omega, so 1ω2=1+(1+ω)=2+ω1 - \omega^2 = 1 + (1 + \omega) = 2 + \omega.
Then xyx=1ω2=ω\frac{x-y}{x} = 1 - \omega^2 = -\omega.
xyy=ωyyy=ω1\frac{x-y}{y} = \frac{\omega y - y}{y} = \omega - 1. Since 1+ω+ω2=01 + \omega + \omega^2 = 0, ω1=2ω2=2ω2\omega - 1 = -2 - \omega^2 = -2 - \omega^2.
xyy=ω1=1ω2\frac{x-y}{y} = \omega - 1 = -1 - \omega^2. Since ω2+ω+1=0\omega^2 + \omega + 1 = 0, ω2=1ω\omega^2 = -1 - \omega. Thus ω1=ω1\omega - 1 = \omega - 1. Also ω1=1ω2\omega - 1 = -1 - \omega^2, which is equal to ω21=ω-\omega^2 - 1 = \omega.
xyx=ωyyωy=ω1ω=11ω=1ω2\frac{x-y}{x} = \frac{\omega y - y}{\omega y} = \frac{\omega - 1}{\omega} = 1 - \frac{1}{\omega} = 1 - \omega^2.
xyy=ωyyy=ω1\frac{x-y}{y} = \frac{\omega y - y}{y} = \omega - 1.
Since ω3=1\omega^3 = 1, we have 1ω=ω2\frac{1}{\omega} = \omega^2. Then xyx=1ω2=ω\frac{x-y}{x} = 1 - \omega^2 = -\omega.
Therefore, (xyx)80=(ω)80=ω80=ω2(\frac{x-y}{x})^{80} = (-\omega)^{80} = \omega^{80} = \omega^{2} since 80=3(26)+280 = 3(26) + 2.
Since ω1=1+i321=3+i32\omega - 1 = \frac{-1 + i\sqrt{3}}{2} - 1 = \frac{-3 + i\sqrt{3}}{2},
xyy=ω1\frac{x-y}{y} = \omega - 1.
Then (xyy)80=(ω1)80=(ω22)80=(3+i32)80(\frac{x-y}{y})^{80} = (\omega - 1)^{80} = (-\omega^2 - 2)^{80} = (\frac{-3+i\sqrt{3}}{2})^{80}. This is incorrect.
Going back to x2+y2+xy=0x^2 + y^2 + xy = 0. Multiply by xyx-y.
(xy)(x2+y2+xy)=x3y3=0(x-y)(x^2 + y^2 + xy) = x^3 - y^3 = 0, thus x3=y3x^3 = y^3.
Then xy\frac{x}{y} is a cube root of unity, not equal to 1, as mentioned.
xyx=1yx\frac{x-y}{x} = 1 - \frac{y}{x} and xyy=xy1\frac{x-y}{y} = \frac{x}{y} - 1.
If x3=y3x^3 = y^3, then (xy)3=1(\frac{x}{y})^3 = 1, which gives xy=ω\frac{x}{y} = \omega or ω2\omega^2 (where ω\omega is a complex cube root of unity).
Thus, yx=ω2\frac{y}{x} = \omega^2 or ω\omega.
xyx=1ω2=ω\frac{x-y}{x} = 1 - \omega^2 = -\omega or 1ω=ω21 - \omega = -\omega^2.
xyy=ω1=ω2\frac{x-y}{y} = \omega - 1 = -\omega^2 or ω21=ω\omega^2 - 1 = -\omega.
Thus, (xyx)80=(ω)80=ω80=(ω3)26ω2=ω2(\frac{x-y}{x})^{80} = (-\omega)^{80} = \omega^{80} = (\omega^3)^{26} \omega^2 = \omega^2 or (ω2)80=ω160=(ω3)53ω=ω(-\omega^2)^{80} = \omega^{160} = (\omega^3)^{53} \omega = \omega.
(xyy)80=(ω2)80=ω160=(ω3)53ω=ω(\frac{x-y}{y})^{80} = (-\omega^2)^{80} = \omega^{160} = (\omega^3)^{53} \omega = \omega or (ω)80=ω80=(ω3)26ω2=ω2(-\omega)^{80} = \omega^{80} = (\omega^3)^{26} \omega^2 = \omega^2.
In either case, the sum is ω+ω2=1\omega + \omega^2 = -1.

3. Final Answer

-1

Related problems in "Algebra"

The problem consists of two questions. Question 1 asks to evaluate five expressions involving expone...

ExponentsExponential EquationsSimplification
2025/6/18

The problem has two parts. Part a: Sketch the graph of the function $y = (1+x)(x-3)$. Part b: Find t...

Quadratic FunctionsGraphingInequalitiesLinear Equations
2025/6/18

The problem consists of two parts. Part a requires sketching the graph of the function $y = (1+x)(x-...

Quadratic FunctionsGraphingInequalitiesMinimum ValueParabola
2025/6/18

The problem is divided into two parts. The first part asks to sketch the graph of the function $y = ...

Quadratic FunctionsGraphingInequalitiesLinear EquationsCoordinate GeometryVertex of a ParabolaMinimum Value
2025/6/17

The problem consists of two parts. Part 1: Convert the given matrix $\begin{bmatrix} 5 & -7 & 1 \\ 6...

Linear AlgebraMatricesDeterminantsMatrix Transformations
2025/6/17

The problem presents three separate mathematical questions: 1. Find a number that when multiplied b...

Linear EquationsWord ProblemsAge ProblemsRectangle Perimeter
2025/6/17

Sophat is 51 years old, and Rasmei is 21 years old. In how many years will Sophat be twice the age o...

Age ProblemsLinear EquationsWord Problems
2025/6/17

The problem consists of two parts. Part 1: Solve the equation $5(1 + 4e^{0.1x-1}) = 25$ for $x$. Par...

Exponential EquationsLogarithmic EquationsQuadratic EquationsLogarithm PropertiesEquation Solving
2025/6/17

The problem presents a formula for $a_n$, which is $a_n = a_1 \cdot r^{n-1}$. This is the formula fo...

Sequences and SeriesGeometric SequenceFormula
2025/6/17

The image contains several math problems. I will solve "Example 1" and "Related Problem 1". Example ...

SequencesSeriesSummationArithmetic SeriesFormula Derivation
2025/6/17