(a) (x+yi)=(3+i)(2−3i) x+yi=3(2)+3(−3i)+i(2)+i(−3i)=6−9i+2i−3i2=6−7i−3(−1)=6−7i+3=9−7i Therefore, x=9 and y=−7. (b) 1−i2+5i=x+yi To simplify the left side, we multiply the numerator and denominator by the conjugate of the denominator:
1−i2+5i⋅1+i1+i=(1−i)(1+i)(2+5i)(1+i)=1−i22+2i+5i+5i2=1−(−1)2+7i−5=2−3+7i=−23+27i Thus, x=−23 and y=27. (c) 3+4i=(x+yi)(1+i) 3+4i=x(1)+x(i)+yi(1)+yi(i)=x+xi+yi+yi2=x+xi+yi−y=(x−y)+(x+y)i Equating the real and imaginary parts, we have:
x−y=3 and x+y=4. Adding these two equations, we get 2x=7, so x=27. Substituting this into x+y=4, we have 27+y=4, so y=4−27=28−27=21. Thus, x=27 and y=21. (d) (x+yi)2=2 x2+2xyi+(yi)2=2 x2−y2+2xyi=2 Equating the real and imaginary parts:
x2−y2=2 and 2xy=0. Since 2xy=0, either x=0 or y=0. If x=0, then −y2=2, so y2=−2. Thus, y=±i2, but we are looking for real values of x and y, so we reject these solutions. If y=0, then x2=2, so x=±2. Thus, x=±2 and y=0. (e) 2+ix+yi=5i x+yi=5i(2+i)=10i+5i2=10i−5=−5+10i Thus, x=−5 and y=10. (f) x+yi1+x−yi1=−54i (x+yi)(x−yi)(x−yi)+(x+yi)=x2+y22x=−54i Since the left side is a real number and the right side is purely imaginary, the only possible value for each side is