The problem asks to simplify several expressions involving complex numbers. The expressions are: (a) $(2+i)(3-4i)$ (b) $(3+4i)(3-4i)$ (c) $(2-i)^2$ (d) $(1+i)^3$ (e) $(x+yi)(x-yi)$ (f) $i(1+i)(2+i)$ (g) $\frac{(1+i\sqrt{3})^2}{2}$

AlgebraComplex NumbersComplex Number ArithmeticSimplification
2025/5/4

1. Problem Description

The problem asks to simplify several expressions involving complex numbers. The expressions are:
(a) (2+i)(34i)(2+i)(3-4i)
(b) (3+4i)(34i)(3+4i)(3-4i)
(c) (2i)2(2-i)^2
(d) (1+i)3(1+i)^3
(e) (x+yi)(xyi)(x+yi)(x-yi)
(f) i(1+i)(2+i)i(1+i)(2+i)
(g) (1+i3)22\frac{(1+i\sqrt{3})^2}{2}

2. Solution Steps

(a) (2+i)(34i)=2(3)+2(4i)+i(3)+i(4i)=68i+3i4i2=65i4(1)=65i+4=105i(2+i)(3-4i) = 2(3) + 2(-4i) + i(3) + i(-4i) = 6 - 8i + 3i - 4i^2 = 6 - 5i - 4(-1) = 6 - 5i + 4 = 10 - 5i
(b) (3+4i)(34i)=3(3)+3(4i)+4i(3)+4i(4i)=912i+12i16i2=916(1)=9+16=25(3+4i)(3-4i) = 3(3) + 3(-4i) + 4i(3) + 4i(-4i) = 9 - 12i + 12i - 16i^2 = 9 - 16(-1) = 9 + 16 = 25
Alternatively, using the difference of squares, (3+4i)(34i)=32(4i)2=916i2=916(1)=9+16=25(3+4i)(3-4i) = 3^2 - (4i)^2 = 9 - 16i^2 = 9 - 16(-1) = 9 + 16 = 25
(c) (2i)2=(2i)(2i)=2(2)+2(i)i(2)+(i)(i)=42i2i+i2=44i1=34i(2-i)^2 = (2-i)(2-i) = 2(2) + 2(-i) - i(2) + (-i)(-i) = 4 - 2i - 2i + i^2 = 4 - 4i - 1 = 3 - 4i
Alternatively, (2i)2=222(2)(i)+i2=44i1=34i(2-i)^2 = 2^2 - 2(2)(i) + i^2 = 4 - 4i - 1 = 3 - 4i
(d) (1+i)3=(1+i)(1+i)(1+i)=(1+i)(1+2i+i2)=(1+i)(1+2i1)=(1+i)(2i)=2i+2i2=2i2=2+2i(1+i)^3 = (1+i)(1+i)(1+i) = (1+i)(1+2i+i^2) = (1+i)(1+2i-1) = (1+i)(2i) = 2i + 2i^2 = 2i - 2 = -2 + 2i
Alternatively, (1+i)3=(1+i)2(1+i)=(1+2i+i2)(1+i)=(1+2i1)(1+i)=(2i)(1+i)=2i+2i2=2i2=2+2i(1+i)^3 = (1+i)^2(1+i) = (1+2i+i^2)(1+i) = (1+2i-1)(1+i) = (2i)(1+i) = 2i + 2i^2 = 2i - 2 = -2 + 2i
(e) (x+yi)(xyi)=x2(yi)2=x2y2i2=x2y2(1)=x2+y2(x+yi)(x-yi) = x^2 - (yi)^2 = x^2 - y^2i^2 = x^2 - y^2(-1) = x^2 + y^2
(f) i(1+i)(2+i)=i(2+i+2i+i2)=i(2+3i1)=i(1+3i)=i+3i2=i3=3+ii(1+i)(2+i) = i(2 + i + 2i + i^2) = i(2 + 3i - 1) = i(1 + 3i) = i + 3i^2 = i - 3 = -3 + i
(g) (1+i3)22=12+2(1)(i3)+(i3)22=1+2i3+i2(3)2=1+2i332=2+2i32=1+i3\frac{(1+i\sqrt{3})^2}{2} = \frac{1^2 + 2(1)(i\sqrt{3}) + (i\sqrt{3})^2}{2} = \frac{1 + 2i\sqrt{3} + i^2(3)}{2} = \frac{1 + 2i\sqrt{3} - 3}{2} = \frac{-2 + 2i\sqrt{3}}{2} = -1 + i\sqrt{3}

3. Final Answer

(a) 105i10-5i
(b) 2525
(c) 34i3-4i
(d) 2+2i-2+2i
(e) x2+y2x^2+y^2
(f) 3+i-3+i
(g) 1+i3-1+i\sqrt{3}

Related problems in "Algebra"

The problem is to simplify the following expression: $(\frac{a-3}{a} - \frac{a-3}{a^2-2a}) : \frac{a...

Algebraic ExpressionsSimplificationFractionsFactoring
2025/5/4

We are asked to solve the equation $\frac{15(5 - x) - 7(x + 9)}{1 - 5x} = 4$ for $x$.

Linear EquationsEquation SolvingAlgebraic ManipulationRational Equations
2025/5/4

The problem has two parts: (14) Find the square root of the irrational number $8 + 2\sqrt{15}$. (15)...

Complex NumbersSquare RootsSimplification
2025/5/4

Solve the following two equations for $x$. Equation 13: $2\frac{1}{3} - \frac{x-2}{4} = \frac{x-1}{6...

Linear EquationsFractionsSolving EquationsCross-multiplication
2025/5/4

We need to solve the equation $\frac{3(x-1)}{4} - 2 = 5x - \frac{x-2}{2}$ for $x$.

Linear EquationsSolving EquationsSimplification
2025/5/4

We are asked to solve for $x$ and $y$ in several equations involving complex numbers.

Complex NumbersComplex Number EquationsComplex ConjugateEquation Solving
2025/5/4

The problem is to solve the exponential equation $6^{2x} = 18$ for $x$.

Exponential EquationsLogarithmsEquation Solving
2025/5/4

The problem asks to express the given complex numbers in the form $a + bi$, where $a$ and $b$ are ra...

Complex NumbersRationalizationComplex Conjugate
2025/5/4

We are asked to solve the equation $15 \cdot 2^x = 10 \cdot 3^x$ for the value of $x$.

Exponential EquationsExponentsEquation Solving
2025/5/4

We are asked to solve the equation $2^x + 2^x = 64$ for $x$.

ExponentsEquationsExponential EquationsSolving Equations
2025/5/4