First, we simplify the expression inside the parenthesis.
aa−3−a2−2aa−3=aa−3−a(a−2)a−3 Find a common denominator for the two fractions:
a(a−2)(a−3)(a−2)−a(a−2)a−3=a(a−2)(a−3)(a−2)−(a−3) Factor out (a−3) in the numerator: a(a−2)(a−3)(a−2−1)=a(a−2)(a−3)(a−3)=a(a−2)(a−3)2 Now, we divide this by aa−3: a(a−2)(a−3)2:aa−3=a(a−2)(a−3)2⋅a−3a Cancel out the common factors:
a(a−2)(a−3)(a−3)(a−3)⋅a=a−2a−3