We are asked to simplify the expressions $15n^{-10}p^{-5}$, $(\frac{2}{3})^{-2}$, $\frac{4t^2u^{-1}}{t^{-5}u^7}$, $(\frac{5}{2})^{-1}$, $\frac{5^{-1}}{2^{-1}}$, $(\frac{5}{2x})^{-1}$, $(\frac{5x}{2})^{-1}$.

AlgebraExponentsSimplificationAlgebraic Expressions
2025/5/5

1. Problem Description

We are asked to simplify the expressions 15n10p515n^{-10}p^{-5}, (23)2(\frac{2}{3})^{-2}, 4t2u1t5u7\frac{4t^2u^{-1}}{t^{-5}u^7}, (52)1(\frac{5}{2})^{-1}, 5121\frac{5^{-1}}{2^{-1}}, (52x)1(\frac{5}{2x})^{-1}, (5x2)1(\frac{5x}{2})^{-1}.

2. Solution Steps

Let's simplify each expression separately:
* 15n10p515n^{-10}p^{-5}
Recall that an=1ana^{-n} = \frac{1}{a^n}. Therefore, n10=1n10n^{-10} = \frac{1}{n^{10}} and p5=1p5p^{-5} = \frac{1}{p^5}.
Thus, 15n10p5=151n101p5=15n10p515n^{-10}p^{-5} = 15 \cdot \frac{1}{n^{10}} \cdot \frac{1}{p^5} = \frac{15}{n^{10}p^5}.
* (23)2(\frac{2}{3})^{-2}
Recall that (ab)n=(ba)n(\frac{a}{b})^{-n} = (\frac{b}{a})^n.
So, (23)2=(32)2=3222=94(\frac{2}{3})^{-2} = (\frac{3}{2})^2 = \frac{3^2}{2^2} = \frac{9}{4}.
* 4t2u1t5u7\frac{4t^2u^{-1}}{t^{-5}u^7}
Using the property an=1ana^{-n} = \frac{1}{a^n}, we have u1=1uu^{-1} = \frac{1}{u} and t5=1t5t^{-5} = \frac{1}{t^5}.
So, 4t2u1t5u7=4t21u1t5u7=4t2ut5u7=4t2+5u1+7=4t7u8\frac{4t^2u^{-1}}{t^{-5}u^7} = \frac{4t^2 \cdot \frac{1}{u}}{\frac{1}{t^5} \cdot u^7} = \frac{4t^2}{u} \cdot \frac{t^5}{u^7} = \frac{4t^{2+5}}{u^{1+7}} = \frac{4t^7}{u^8}.
* (52)1(\frac{5}{2})^{-1}
Using the property (ab)n=(ba)n(\frac{a}{b})^{-n} = (\frac{b}{a})^n, we have (52)1=25(\frac{5}{2})^{-1} = \frac{2}{5}.
* 5121\frac{5^{-1}}{2^{-1}}
Using the property an=1ana^{-n} = \frac{1}{a^n}, we have 51=155^{-1} = \frac{1}{5} and 21=122^{-1} = \frac{1}{2}.
So, 5121=1512=1521=25\frac{5^{-1}}{2^{-1}} = \frac{\frac{1}{5}}{\frac{1}{2}} = \frac{1}{5} \cdot \frac{2}{1} = \frac{2}{5}.
* (52x)1(\frac{5}{2x})^{-1}
Using the property (ab)n=(ba)n(\frac{a}{b})^{-n} = (\frac{b}{a})^n, we have (52x)1=2x5(\frac{5}{2x})^{-1} = \frac{2x}{5}.
* (5x2)1(\frac{5x}{2})^{-1}
Using the property (ab)n=(ba)n(\frac{a}{b})^{-n} = (\frac{b}{a})^n, we have (5x2)1=25x(\frac{5x}{2})^{-1} = \frac{2}{5x}.

3. Final Answer

15n10p5=15n10p515n^{-10}p^{-5} = \frac{15}{n^{10}p^5}
(23)2=94(\frac{2}{3})^{-2} = \frac{9}{4}
4t2u1t5u7=4t7u8\frac{4t^2u^{-1}}{t^{-5}u^7} = \frac{4t^7}{u^8}
(52)1=25(\frac{5}{2})^{-1} = \frac{2}{5}
5121=25\frac{5^{-1}}{2^{-1}} = \frac{2}{5}
(52x)1=2x5(\frac{5}{2x})^{-1} = \frac{2x}{5}
(5x2)1=25x(\frac{5x}{2})^{-1} = \frac{2}{5x}

Related problems in "Algebra"

The problem gives a matrix $R = \begin{bmatrix} 2 & 1 \\ -3 & 4 \end{bmatrix}$ and asks to compute s...

MatrixDeterminant2x2 Matrix
2025/5/6

We need to solve the equation $4y - 2y = 16$ for the variable $y$.

Linear EquationsSolving Equations
2025/5/6

We are asked to evaluate the expression $\frac{3^{400} + 3^{401} + 3^{402}}{3^{400}}$.

ExponentsSimplificationAlgebraic Manipulation
2025/5/6

The problem asks us to graph the inequality $x \le 1$ on a number line. We need to choose the correc...

InequalitiesNumber LineGraphing
2025/5/5

We need to simplify the following expressions: a) $(\frac{5}{2})^{-1} \frac{5^{-1}}{2^{-1}}$ b) $(\f...

ExponentsSimplificationFractions
2025/5/5

The problem asks to simplify the expression $(\frac{5x}{2})^{-1}$.

ExponentsSimplificationAlgebraic Expressions
2025/5/5

The problem is to simplify expressions with negative exponents. There are 12 expressions in total th...

ExponentsSimplificationNegative ExponentsAlgebraic Expressions
2025/5/5

The problem asks to factor out the greatest common factor (GCF) from the polynomial $12z^2 - 48z$.

Polynomial FactorizationGreatest Common Factor
2025/5/5

The problem asks us to multiply $2.9m$ by $(m-6)$. This involves using the distributive property.

Algebraic ExpressionsDistributive PropertyPolynomials
2025/5/5

The problem asks us to simplify the expression $(k^{-3}m^{-8})^8$ and express the answer using expon...

ExponentsSimplificationAlgebraic ExpressionsPower of a Power Rule
2025/5/5