The problem asks us to solve the system of equations: $x^2 + y^2 = 3$ $x^2 - y = 15$

AlgebraSystems of EquationsComplex NumbersQuadratic EquationsSubstitutionAlgebraic Manipulation
2025/3/19

1. Problem Description

The problem asks us to solve the system of equations:
x2+y2=3x^2 + y^2 = 3
x2y=15x^2 - y = 15

2. Solution Steps

We have two equations:
x2+y2=3x^2 + y^2 = 3 (1)
x2y=15x^2 - y = 15 (2)
From equation (2), we can express x2x^2 in terms of yy:
x2=y+15x^2 = y + 15 (3)
Substitute equation (3) into equation (1):
(y+15)+y2=3(y + 15) + y^2 = 3
y2+y+15=3y^2 + y + 15 = 3
y2+y+12=0y^2 + y + 12 = 0
We can use the quadratic formula to solve for yy:
y=b±b24ac2ay = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
where a=1a = 1, b=1b = 1, and c=12c = 12.
y=1±124(1)(12)2(1)y = \frac{-1 \pm \sqrt{1^2 - 4(1)(12)}}{2(1)}
y=1±1482y = \frac{-1 \pm \sqrt{1 - 48}}{2}
y=1±472y = \frac{-1 \pm \sqrt{-47}}{2}
y=1±i472y = \frac{-1 \pm i\sqrt{47}}{2}
Let y1=1+i472y_1 = \frac{-1 + i\sqrt{47}}{2} and y2=1i472y_2 = \frac{-1 - i\sqrt{47}}{2}.
Substitute y1y_1 into equation (3):
x2=y1+15=1+i472+15=1+i47+302=29+i472x^2 = y_1 + 15 = \frac{-1 + i\sqrt{47}}{2} + 15 = \frac{-1 + i\sqrt{47} + 30}{2} = \frac{29 + i\sqrt{47}}{2}
So, x=±29+i472x = \pm \sqrt{\frac{29 + i\sqrt{47}}{2}}
Substitute y2y_2 into equation (3):
x2=y2+15=1i472+15=1i47+302=29i472x^2 = y_2 + 15 = \frac{-1 - i\sqrt{47}}{2} + 15 = \frac{-1 - i\sqrt{47} + 30}{2} = \frac{29 - i\sqrt{47}}{2}
So, x=±29i472x = \pm \sqrt{\frac{29 - i\sqrt{47}}{2}}

3. Final Answer

The solutions are:
y=1±i472y = \frac{-1 \pm i\sqrt{47}}{2}
x=±29±i472x = \pm \sqrt{\frac{29 \pm i\sqrt{47}}{2}}
The solutions are complex.
x=±29+i472,y=1+i472x = \pm \sqrt{\frac{29 + i\sqrt{47}}{2}}, y = \frac{-1 + i\sqrt{47}}{2}
x=±29i472,y=1i472x = \pm \sqrt{\frac{29 - i\sqrt{47}}{2}}, y = \frac{-1 - i\sqrt{47}}{2}

Related problems in "Algebra"

The $r^{th}$ term $U_r$ of a sequence $U_1, U_2, ...$ is given by $U_r = U_{r-1} + 8(r-1)$. If $U_2 ...

SequencesRecurrence RelationsMathematical Induction
2025/4/8

We are given the function $f(x) = 2x^3 + qx + 2$, where $q$ is a constant. We are also given that $f...

PolynomialsFunction EvaluationSolving Equations
2025/4/8

We need to find the domain of the function $g(x) = \frac{3x-1}{x^3-1}$.

DomainRational FunctionsPolynomialsFactorizationQuadratic FormulaComplex NumbersInterval Notation
2025/4/8

The problem asks to find the value(s) of $x$ for which the expression $\frac{x^2 - 7x + 12}{x^2 - 9x...

Rational ExpressionsQuadratic EquationsFactoringUndefined Values
2025/4/8

The problem asks us to find the remainder when the polynomial $f(x) = 2x^3 - 13x^2 + 14x + 24$ is di...

PolynomialsRemainder TheoremPolynomial Division
2025/4/8

The problem states that a polynomial $f(x) = 2x^3 - 13x^2 + 14x + 24$ is divided by something, but t...

PolynomialsRemainder TheoremPolynomial Division
2025/4/8

The problem asks us to find the values of $x$ and $y$ given the following two equations: $\log_2(3x+...

LogarithmsSystems of EquationsLinear EquationsSubstitution
2025/4/8

We need to find the coefficient of $x^6$ in the binomial expansion of $(x+2)^{10}$.

Binomial TheoremBinomial ExpansionCombinationsPolynomials
2025/4/8

The problem asks us to simplify the expression $\sqrt[3]{5^8}$.

ExponentsRadicalsSimplification
2025/4/8

The problem asks to find the value of the constant $k$ given the equation $\sqrt{3k} + \sqrt{18} - \...

EquationsSquare RootsSimplification
2025/4/8