The problem asks for the simplification of the expression $\sin 60^\circ \cos 15^\circ - \cos 60^\circ \sin 15^\circ$.

TrigonometryTrigonometric IdentitiesAngle Subtraction FormulaSimplificationSine Function
2025/5/7

1. Problem Description

The problem asks for the simplification of the expression sin60cos15cos60sin15\sin 60^\circ \cos 15^\circ - \cos 60^\circ \sin 15^\circ.

2. Solution Steps

The given expression is of the form sinAcosBcosAsinB\sin A \cos B - \cos A \sin B.
Recall the trigonometric identity:
sin(AB)=sinAcosBcosAsinB\sin(A - B) = \sin A \cos B - \cos A \sin B
In this case, A=60A = 60^\circ and B=15B = 15^\circ. Therefore, the expression can be simplified as follows:
sin60cos15cos60sin15=sin(6015)=sin(45)\sin 60^\circ \cos 15^\circ - \cos 60^\circ \sin 15^\circ = \sin(60^\circ - 15^\circ) = \sin(45^\circ)
We know that sin(45)=12\sin(45^\circ) = \frac{1}{\sqrt{2}} or 22\frac{\sqrt{2}}{2}. However, this result is not in the given options. Let's look at the options carefully. The options are 12\frac{1}{\sqrt{2}}, 3+122\frac{\sqrt{3}+1}{2\sqrt{2}}, 32\frac{\sqrt{3}}{2}, and 12\frac{1}{2}.
Since the correct simplification should have been sin(45)=12=22\sin(45^\circ) = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}. I notice the original problem is slightly wrong. It should be sin60cos15cos60sin15\sin 60^\circ \cos 15^\circ - \cos 60^\circ \sin 15^\circ. It looks like there is a typo. The problem statement is
sin60cos15cos60sin15=sin(6015)=sin45=12=22\sin 60^\circ \cos 15^\circ - \cos 60^\circ \sin 15^\circ = \sin (60^\circ - 15^\circ) = \sin 45^\circ = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}.
This answer is among the multiple choices.
However, the question could be asking for something different.
Let's try the following:
sin(AB)=sinAcosBcosAsinB\sin(A - B) = \sin A \cos B - \cos A \sin B.
sin(AB)=sinAcosBcosAsinB\sin(A - B) = \sin A \cos B - \cos A \sin B
Consider A=60A = 60^\circ and B=15B = 15^\circ, then we have:
sin(60)=32\sin(60^\circ) = \frac{\sqrt{3}}{2}
cos(60)=12\cos(60^\circ) = \frac{1}{2}
We also have 15=453015^\circ = 45^\circ - 30^\circ, so we can find sin(15)\sin(15^\circ) and cos(15)\cos(15^\circ) using the angle subtraction formulas.
sin(15)=sin(4530)=sin(45)cos(30)cos(45)sin(30)=22322212=624\sin(15^\circ) = \sin(45^\circ - 30^\circ) = \sin(45^\circ)\cos(30^\circ) - \cos(45^\circ)\sin(30^\circ) = \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} - \frac{\sqrt{2}}{2} \cdot \frac{1}{2} = \frac{\sqrt{6} - \sqrt{2}}{4}
cos(15)=cos(4530)=cos(45)cos(30)+sin(45)sin(30)=2232+2212=6+24\cos(15^\circ) = \cos(45^\circ - 30^\circ) = \cos(45^\circ)\cos(30^\circ) + \sin(45^\circ)\sin(30^\circ) = \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} + \frac{\sqrt{2}}{2} \cdot \frac{1}{2} = \frac{\sqrt{6} + \sqrt{2}}{4}
So, sin60cos15cos60sin15=326+2412624=18+68628=32+66+28=428=22=12\sin 60^\circ \cos 15^\circ - \cos 60^\circ \sin 15^\circ = \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{6} + \sqrt{2}}{4} - \frac{1}{2} \cdot \frac{\sqrt{6} - \sqrt{2}}{4} = \frac{\sqrt{18} + \sqrt{6}}{8} - \frac{\sqrt{6} - \sqrt{2}}{8} = \frac{3\sqrt{2} + \sqrt{6} - \sqrt{6} + \sqrt{2}}{8} = \frac{4\sqrt{2}}{8} = \frac{\sqrt{2}}{2} = \frac{1}{\sqrt{2}}.
This result is among the multiple choices. Now, consider the case where it is sin(6015)\sin (60-15) instead.
sin(6015)=sin(45)=22=12\sin(60^\circ - 15^\circ) = \sin(45^\circ) = \frac{\sqrt{2}}{2} = \frac{1}{\sqrt{2}}
12\frac{1}{\sqrt{2}} is one of the options.

3. Final Answer

12\frac{1}{\sqrt{2}}

Related problems in "Trigonometry"

The first question asks which of the following expressions properly expresses $cos(120^\circ)$ using...

TrigonometryCompound Angle FormulaSine RuleCosine RuleAngle Sum and Difference IdentitiesRadians
2025/5/7

The problem asks us to find the value of $\tan(\frac{2\pi}{3})$. And the second problem asks to simp...

TrigonometryTangent FunctionAngle IdentitiesDouble Angle Formula
2025/5/7

The question asks which of the given trigonometric expressions is equivalent to $\frac{\sqrt{3}}{2}$...

Trigonometric IdentitiesTrigonometric FunctionsCosine FunctionPeriodicityOptimization
2025/5/7

Question 13 asks for the related acute angle for the solution of the equation $8 \tan x + 3 = -4$, a...

TrigonometryTrigonometric EquationsInverse Trigonometric FunctionsUnit CircleReference AngleTrigonometric Values
2025/5/7

Given that $\tan x = \frac{6}{8}$ and $\pi < x < \frac{3\pi}{2}$, we need to find the value of $\cos...

TrigonometryTrigonometric IdentitiesDouble Angle FormulasTangentCosineQuadrant Analysis
2025/5/7

The problem consists of two questions. Question 9: Determine the quadrants in which the solutions to...

TrigonometryTrigonometric EquationsUnit CircleQuadrantsSine FunctionCosine FunctionAngle Measurement
2025/5/7

The problem asks us to simplify the expression $\frac{\tan(\frac{\pi}{4}) + \tan(\frac{\pi}{6})}{1 -...

TrigonometryTangent Addition FormulaAngle Sum IdentitySimplification
2025/5/7

Given $\cos x = -\frac{12}{13}$ and $\frac{\pi}{2} < x < \pi$, find $\sin 2x$.

TrigonometryTrigonometric IdentitiesDouble Angle FormulasSineCosineAngle in Quadrant
2025/5/7

The problem asks to simplify the expression $\cos^2(\frac{\pi}{12}) - \sin^2(\frac{\pi}{12})$.

TrigonometryTrigonometric IdentitiesDouble Angle FormulaCosine Function
2025/5/7

We are asked to calculate $\sin(x + \frac{\pi}{6})$ given that $\sin(x) = \frac{4}{5}$ and $\frac{\p...

TrigonometryAngle Sum FormulaSine FunctionUnit Circle
2025/5/3