Given $\cos x = -\frac{12}{13}$ and $\frac{\pi}{2} < x < \pi$, find $\sin 2x$.

TrigonometryTrigonometryTrigonometric IdentitiesDouble Angle FormulasSineCosineAngle in Quadrant
2025/5/7

1. Problem Description

Given cosx=1213\cos x = -\frac{12}{13} and π2<x<π\frac{\pi}{2} < x < \pi, find sin2x\sin 2x.

2. Solution Steps

Since π2<x<π\frac{\pi}{2} < x < \pi, xx is in the second quadrant, where sinx>0\sin x > 0.
We use the identity sin2x+cos2x=1\sin^2 x + \cos^2 x = 1 to find sinx\sin x.
sin2x=1cos2x=1(1213)2=1144169=169144169=25169\sin^2 x = 1 - \cos^2 x = 1 - \left(-\frac{12}{13}\right)^2 = 1 - \frac{144}{169} = \frac{169 - 144}{169} = \frac{25}{169}.
Since sinx>0\sin x > 0 in the second quadrant, sinx=25169=513\sin x = \sqrt{\frac{25}{169}} = \frac{5}{13}.
Now, we use the double angle formula for sine:
sin2x=2sinxcosx\sin 2x = 2 \sin x \cos x.
Substitute the values of sinx\sin x and cosx\cos x:
sin2x=2513(1213)=25121313=120169\sin 2x = 2 \cdot \frac{5}{13} \cdot \left(-\frac{12}{13}\right) = -\frac{2 \cdot 5 \cdot 12}{13 \cdot 13} = -\frac{120}{169}.

3. Final Answer

The final answer is 120169-\frac{120}{169}.

Related problems in "Trigonometry"

The first question asks which of the following expressions properly expresses $cos(120^\circ)$ using...

TrigonometryCompound Angle FormulaSine RuleCosine RuleAngle Sum and Difference IdentitiesRadians
2025/5/7

The problem asks us to find the value of $\tan(\frac{2\pi}{3})$. And the second problem asks to simp...

TrigonometryTangent FunctionAngle IdentitiesDouble Angle Formula
2025/5/7

The question asks which of the given trigonometric expressions is equivalent to $\frac{\sqrt{3}}{2}$...

Trigonometric IdentitiesTrigonometric FunctionsCosine FunctionPeriodicityOptimization
2025/5/7

Question 13 asks for the related acute angle for the solution of the equation $8 \tan x + 3 = -4$, a...

TrigonometryTrigonometric EquationsInverse Trigonometric FunctionsUnit CircleReference AngleTrigonometric Values
2025/5/7

Given that $\tan x = \frac{6}{8}$ and $\pi < x < \frac{3\pi}{2}$, we need to find the value of $\cos...

TrigonometryTrigonometric IdentitiesDouble Angle FormulasTangentCosineQuadrant Analysis
2025/5/7

The problem consists of two questions. Question 9: Determine the quadrants in which the solutions to...

TrigonometryTrigonometric EquationsUnit CircleQuadrantsSine FunctionCosine FunctionAngle Measurement
2025/5/7

The problem asks us to simplify the expression $\frac{\tan(\frac{\pi}{4}) + \tan(\frac{\pi}{6})}{1 -...

TrigonometryTangent Addition FormulaAngle Sum IdentitySimplification
2025/5/7

The problem asks to simplify the expression $\cos^2(\frac{\pi}{12}) - \sin^2(\frac{\pi}{12})$.

TrigonometryTrigonometric IdentitiesDouble Angle FormulaCosine Function
2025/5/7

The problem asks for the simplification of the expression $\sin 60^\circ \cos 15^\circ - \cos 60^\ci...

Trigonometric IdentitiesAngle Subtraction FormulaSimplificationSine Function
2025/5/7

We are asked to calculate $\sin(x + \frac{\pi}{6})$ given that $\sin(x) = \frac{4}{5}$ and $\frac{\p...

TrigonometryAngle Sum FormulaSine FunctionUnit Circle
2025/5/3