Since 2π<x<π, x is in the second quadrant, where sinx>0. We use the identity sin2x+cos2x=1 to find sinx. sin2x=1−cos2x=1−(−1312)2=1−169144=169169−144=16925. Since sinx>0 in the second quadrant, sinx=16925=135. Now, we use the double angle formula for sine:
sin2x=2sinxcosx. Substitute the values of sinx and cosx: sin2x=2⋅135⋅(−1312)=−13⋅132⋅5⋅12=−169120.