The problem requires us to solve for $p$, $q$, and $r$ given the matrix equation: $\begin{bmatrix} p & 6 \\ 2 & -4 \end{bmatrix} \begin{bmatrix} p & 6 \\ 2 & -4 \end{bmatrix} = \begin{bmatrix} r & -12 \\ -4 & 7q \end{bmatrix}$

AlgebraMatricesMatrix MultiplicationLinear Equations
2025/5/9

1. Problem Description

The problem requires us to solve for pp, qq, and rr given the matrix equation:
[p624][p624]=[r1247q]\begin{bmatrix} p & 6 \\ 2 & -4 \end{bmatrix} \begin{bmatrix} p & 6 \\ 2 & -4 \end{bmatrix} = \begin{bmatrix} r & -12 \\ -4 & 7q \end{bmatrix}

2. Solution Steps

First, perform the matrix multiplication:
[p624][p624]=[p2+6(2)6p+6(4)2p4(2)2(6)+(4)(4)]=[p2+126p242p812+16]=[p2+126p242p828]\begin{bmatrix} p & 6 \\ 2 & -4 \end{bmatrix} \begin{bmatrix} p & 6 \\ 2 & -4 \end{bmatrix} = \begin{bmatrix} p^2 + 6(2) & 6p + 6(-4) \\ 2p - 4(2) & 2(6) + (-4)(-4) \end{bmatrix} = \begin{bmatrix} p^2 + 12 & 6p - 24 \\ 2p - 8 & 12 + 16 \end{bmatrix} = \begin{bmatrix} p^2 + 12 & 6p - 24 \\ 2p - 8 & 28 \end{bmatrix}
Now, equate the result to the right-hand side matrix:
[p2+126p242p828]=[r1247q]\begin{bmatrix} p^2 + 12 & 6p - 24 \\ 2p - 8 & 28 \end{bmatrix} = \begin{bmatrix} r & -12 \\ -4 & 7q \end{bmatrix}
This gives us the following equations:
p2+12=rp^2 + 12 = r
6p24=126p - 24 = -12
2p8=42p - 8 = -4
28=7q28 = 7q
From 6p24=126p - 24 = -12, we have:
6p=126p = 12
p=2p = 2
From 2p8=42p - 8 = -4, we have:
2p=42p = 4
p=2p = 2
Since both equations give p=2p=2, it is consistent.
Now substitute p=2p = 2 into p2+12=rp^2 + 12 = r:
r=(2)2+12=4+12=16r = (2)^2 + 12 = 4 + 12 = 16
From 28=7q28 = 7q, we have:
q=287=4q = \frac{28}{7} = 4
Therefore, p=2p = 2, q=4q = 4, and r=16r = 16.

3. Final Answer

p=2p = 2
q=4q = 4
r=16r = 16

Related problems in "Algebra"

The problem consists of two parts. First, express the function $f(x) = \cos(2x) + \sqrt{3}\sin(2x)$ ...

TrigonometryTrigonometric IdentitiesInequalitiesIntervals
2025/5/9

The problem asks us to find the equation of the line passing through the points $(-1, 4)$ and $(5, -...

Linear EquationsSlope-intercept formPoint-slope formCoordinate Geometry
2025/5/9

The problem asks us to find the value of $x$ such that the lines $2x+2$ and $x+56$ are parallel and ...

Linear EquationsParallel Lines
2025/5/9

The problem is to find $x$ so that $114+x = 115$. Then, find $y$ so that $x+y = 115$.

Linear EquationsSolving Equations
2025/5/9

The problem is to solve the system of two linear equations with two variables: $x + y = 9$ $2x + 3y ...

Linear EquationsSystems of EquationsSubstitution Method
2025/5/9

The problem is to factor the quadratic expression $x^2 + 2x - 15$.

Quadratic EquationsFactoringPolynomials
2025/5/9

The problem asks us to find the value of $x$ given the matrix equation: $$ \begin{bmatrix} 6 & -2 \\...

Linear AlgebraMatrix OperationsMatrix MultiplicationSolving Equations
2025/5/9

The problem asks us to find the value of $x$ given the matrix equation $\begin{bmatrix} 9 & 4 \\ -3 ...

Linear AlgebraMatrix EquationsMatrix MultiplicationSystems of Equations
2025/5/9

We are given a matrix equation: $[4 \ 3] \begin{bmatrix} 1 & -2m \\ 3 & -1 \end{bmatrix} = [13 \ -35...

Matrix AlgebraMatrix EquationsLinear Equations
2025/5/9

We are asked to solve two complex number problems: (e) Simplify $\frac{1}{(2+i)(\sqrt{3}-2i)}$ (f) S...

Complex NumbersComplex Number ArithmeticSimplificationRationalization
2025/5/9