We are given several complex number problems. (2a) Express $\frac{1}{z}$ in the form $a + ib$, where $z = x + iy$ is a nonzero complex number. (2b) Given $z + \frac{1}{z} = k$, where $k$ is a real number, prove that $z$ is real or $|z| = 1$. (23a) Express $\frac{1}{i^3}$ in the form $a+ib$. (23b) Express $i^{15}$ in the form $a+ib$. (23c) Express $i^{1002}$ in the form $a+ib$. (24a) Express $\frac{\sqrt{3}+1}{\sqrt{3}-1} + \sqrt{3} - 1$ in the form $a+b\sqrt{3}$, where $a$ and $b$ are rational numbers.

AlgebraComplex NumbersComplex ConjugateNumber Systems
2025/5/10

1. Problem Description

We are given several complex number problems.
(2a) Express 1z\frac{1}{z} in the form a+iba + ib, where z=x+iyz = x + iy is a nonzero complex number.
(2b) Given z+1z=kz + \frac{1}{z} = k, where kk is a real number, prove that zz is real or z=1|z| = 1.
(23a) Express 1i3\frac{1}{i^3} in the form a+iba+ib.
(23b) Express i15i^{15} in the form a+iba+ib.
(23c) Express i1002i^{1002} in the form a+iba+ib.
(24a) Express 3+131+31\frac{\sqrt{3}+1}{\sqrt{3}-1} + \sqrt{3} - 1 in the form a+b3a+b\sqrt{3}, where aa and bb are rational numbers.

2. Solution Steps

(2a)
We have z=x+iyz = x + iy, so 1z=1x+iy\frac{1}{z} = \frac{1}{x + iy}.
To express this in the form a+iba + ib, we multiply the numerator and denominator by the conjugate of the denominator:
1x+iy=1x+iyxiyxiy=xiyx2+y2=xx2+y2iyx2+y2\frac{1}{x + iy} = \frac{1}{x + iy} \cdot \frac{x - iy}{x - iy} = \frac{x - iy}{x^2 + y^2} = \frac{x}{x^2 + y^2} - i \frac{y}{x^2 + y^2}.
Therefore, a=xx2+y2a = \frac{x}{x^2 + y^2} and b=yx2+y2b = -\frac{y}{x^2 + y^2}.
(2b)
Given z+1z=kz + \frac{1}{z} = k, where kk is real.
Let z=x+iyz = x + iy. Then x+iy+1x+iy=kx + iy + \frac{1}{x + iy} = k.
x+iy+xiyx2+y2=kx + iy + \frac{x - iy}{x^2 + y^2} = k.
Separating real and imaginary parts:
x+xx2+y2=kx + \frac{x}{x^2 + y^2} = k and yyx2+y2=0y - \frac{y}{x^2 + y^2} = 0.
From the imaginary part, y(11x2+y2)=0y(1 - \frac{1}{x^2 + y^2}) = 0, so either y=0y = 0 or 11x2+y2=01 - \frac{1}{x^2 + y^2} = 0.
If y=0y = 0, then z=xz = x, which means zz is real.
If 11x2+y2=01 - \frac{1}{x^2 + y^2} = 0, then x2+y2=1x^2 + y^2 = 1, so z2=1|z|^2 = 1, and z=1|z| = 1.
Thus, zz is real or z=1|z| = 1.
(23a)
1i3=1i2i=1i=1iii=ii2=i(1)=i=0+1i\frac{1}{i^3} = \frac{1}{i^2 \cdot i} = \frac{1}{-i} = \frac{1}{-i} \cdot \frac{i}{i} = \frac{i}{-i^2} = \frac{i}{-(-1)} = i = 0 + 1i.
(23b)
i15=i12i3=(i4)3i3=(1)3i3=i3=i2i=i=01ii^{15} = i^{12} \cdot i^3 = (i^4)^3 \cdot i^3 = (1)^3 \cdot i^3 = i^3 = i^2 \cdot i = -i = 0 - 1i.
(23c)
i1002=i1000i2=(i4)250i2=(1)250(1)=1=1+0ii^{1002} = i^{1000} \cdot i^2 = (i^4)^{250} \cdot i^2 = (1)^{250} \cdot (-1) = -1 = -1 + 0i.
(24a)
3+131+31=3+1313+13+1+31=(3+1)231+31=3+23+12+31=4+232+31=2+3+31=1+23\frac{\sqrt{3}+1}{\sqrt{3}-1} + \sqrt{3} - 1 = \frac{\sqrt{3}+1}{\sqrt{3}-1} \cdot \frac{\sqrt{3}+1}{\sqrt{3}+1} + \sqrt{3} - 1 = \frac{(\sqrt{3}+1)^2}{3-1} + \sqrt{3} - 1 = \frac{3 + 2\sqrt{3} + 1}{2} + \sqrt{3} - 1 = \frac{4 + 2\sqrt{3}}{2} + \sqrt{3} - 1 = 2 + \sqrt{3} + \sqrt{3} - 1 = 1 + 2\sqrt{3}.
So a=1a = 1 and b=2b = 2.

3. Final Answer

(2a) xx2+y2iyx2+y2\frac{x}{x^2 + y^2} - i \frac{y}{x^2 + y^2}
(2b) Proof completed.
(23a) 0+1i0 + 1i
(23b) 01i0 - 1i
(23c) 1+0i-1 + 0i
(24a) 1+231 + 2\sqrt{3}

Related problems in "Algebra"

The problem asks whether the provided graph represents a function and its inverse. The graph shows t...

FunctionsInverse FunctionsGraphsExponentialsLogarithmsCoordinate Geometry
2025/5/10

The problem asks to simplify the expression $4x^2 - 3x(2x - 5)$.

Polynomial simplificationAlgebraic manipulationExpanding expressions
2025/5/10

The problem consists of two parts. First, we need to find an expression for the amount of money Mary...

Algebraic ExpressionsSystems of EquationsLinear EquationsVariable SubstitutionSimplification
2025/5/10

We are asked to rationalize the numerator for each of the three given expressions. (i) $\frac{\sqrt{...

RadicalsRationalizationAlgebraic Manipulation
2025/5/10

The problem asks us to expand and simplify the expression $(a + 2)(a - 3) - 3(a - 5)$.

PolynomialsSimplificationExpandingCombining Like Terms
2025/5/10

The problem is to simplify the algebraic expression $5m - 2(x - 3m)$.

Algebraic ExpressionSimplificationCombining Like TermsDistribution
2025/5/10

The problem asks to: a) Express $\frac{\sqrt{3}+1}{\sqrt{3}-1} + \sqrt{3} - 1$ in the form $a + b\sq...

RationalizationRadicalsSimplificationAlgebraic Manipulation
2025/5/10

We are given a complex number $z = x + iy$, where $z$ is non-zero. We need to: a) Express $\frac{1}{...

Complex NumbersComplex ConjugateAbsolute Value of Complex NumbersProofs
2025/5/10

Solve for $x$ and $y$ in the equation $\frac{x}{1+i} - \frac{y}{2-i} = \frac{1-5i}{3-2i}$.

Complex NumbersSystems of EquationsLinear Equations
2025/5/10

We are given the equation $\frac{1}{x+iy} + \frac{1}{1+3i} = 1$, where $x$ and $y$ are real numbers,...

Complex NumbersEquation SolvingComplex Conjugate
2025/5/10