We are asked to rationalize the numerator for each of the three given expressions. (i) $\frac{\sqrt{5+h}-3}{h}$ (ii) $\frac{\sqrt{3}+\sqrt{5}}{7}$ (iii) $\frac{\sqrt{x}-\sqrt{x+h}}{h\sqrt{x}+\sqrt{x+h}}$

AlgebraRadicalsRationalizationAlgebraic Manipulation
2025/5/10

1. Problem Description

We are asked to rationalize the numerator for each of the three given expressions.
(i) 5+h3h\frac{\sqrt{5+h}-3}{h}
(ii) 3+57\frac{\sqrt{3}+\sqrt{5}}{7}
(iii) xx+hhx+x+h\frac{\sqrt{x}-\sqrt{x+h}}{h\sqrt{x}+\sqrt{x+h}}

2. Solution Steps

(i) Rationalize the numerator of 5+h3h\frac{\sqrt{5+h}-3}{h}.
Multiply the numerator and denominator by the conjugate of the numerator, which is 5+h+3\sqrt{5+h}+3.
5+h3h5+h+35+h+3=(5+h)9h(5+h+3)=h4h(5+h+3)\frac{\sqrt{5+h}-3}{h} \cdot \frac{\sqrt{5+h}+3}{\sqrt{5+h}+3} = \frac{(5+h) - 9}{h(\sqrt{5+h}+3)} = \frac{h-4}{h(\sqrt{5+h}+3)}
(ii) Rationalize the numerator of 3+57\frac{\sqrt{3}+\sqrt{5}}{7}.
Multiply the numerator and denominator by the conjugate of the numerator, which is 35\sqrt{3}-\sqrt{5}.
3+573535=357(35)=27(35)\frac{\sqrt{3}+\sqrt{5}}{7} \cdot \frac{\sqrt{3}-\sqrt{5}}{\sqrt{3}-\sqrt{5}} = \frac{3-5}{7(\sqrt{3}-\sqrt{5})} = \frac{-2}{7(\sqrt{3}-\sqrt{5})}
(iii) Rationalize the numerator of xx+hh(x+x+h)\frac{\sqrt{x}-\sqrt{x+h}}{h(\sqrt{x}+\sqrt{x+h})}.
Multiply the numerator and denominator by the conjugate of the numerator, which is x+x+h\sqrt{x}+\sqrt{x+h}.
xx+hh(x+x+h)x+x+hx+x+h=x(x+h)h(x+x+h)(x+x+h)=hh(x+x+h)2=1(x+x+h)2=1x+2x(x+h)+x+h=12x+h+2x2+xh\frac{\sqrt{x}-\sqrt{x+h}}{h(\sqrt{x}+\sqrt{x+h})} \cdot \frac{\sqrt{x}+\sqrt{x+h}}{\sqrt{x}+\sqrt{x+h}} = \frac{x - (x+h)}{h(\sqrt{x}+\sqrt{x+h})(\sqrt{x}+\sqrt{x+h})} = \frac{-h}{h(\sqrt{x}+\sqrt{x+h})^2} = \frac{-1}{(\sqrt{x}+\sqrt{x+h})^2} = \frac{-1}{x + 2\sqrt{x(x+h)} + x+h} = \frac{-1}{2x+h+2\sqrt{x^2+xh}}

3. Final Answer

(i) h4h(5+h+3)\frac{h-4}{h(\sqrt{5+h}+3)}
(ii) 27(35)\frac{-2}{7(\sqrt{3}-\sqrt{5})}
(iii) 1(x+x+h)2\frac{-1}{(\sqrt{x}+\sqrt{x+h})^2}
or equivalently:
(i) h4h(5+h+3)\frac{h-4}{h(\sqrt{5+h}+3)}
(ii) 27(35)\frac{-2}{7(\sqrt{3}-\sqrt{5})}
(iii) 12x+h+2x2+xh\frac{-1}{2x+h+2\sqrt{x^2+xh}}

Related problems in "Algebra"

The problem asks whether the provided graph represents a function and its inverse. The graph shows t...

FunctionsInverse FunctionsGraphsExponentialsLogarithmsCoordinate Geometry
2025/5/10

The problem asks to simplify the expression $4x^2 - 3x(2x - 5)$.

Polynomial simplificationAlgebraic manipulationExpanding expressions
2025/5/10

The problem consists of two parts. First, we need to find an expression for the amount of money Mary...

Algebraic ExpressionsSystems of EquationsLinear EquationsVariable SubstitutionSimplification
2025/5/10

The problem asks us to expand and simplify the expression $(a + 2)(a - 3) - 3(a - 5)$.

PolynomialsSimplificationExpandingCombining Like Terms
2025/5/10

The problem is to simplify the algebraic expression $5m - 2(x - 3m)$.

Algebraic ExpressionSimplificationCombining Like TermsDistribution
2025/5/10

The problem asks to: a) Express $\frac{\sqrt{3}+1}{\sqrt{3}-1} + \sqrt{3} - 1$ in the form $a + b\sq...

RationalizationRadicalsSimplificationAlgebraic Manipulation
2025/5/10

We are given a complex number $z = x + iy$, where $z$ is non-zero. We need to: a) Express $\frac{1}{...

Complex NumbersComplex ConjugateAbsolute Value of Complex NumbersProofs
2025/5/10

Solve for $x$ and $y$ in the equation $\frac{x}{1+i} - \frac{y}{2-i} = \frac{1-5i}{3-2i}$.

Complex NumbersSystems of EquationsLinear Equations
2025/5/10

We are given several complex number problems. (2a) Express $\frac{1}{z}$ in the form $a + ib$, where...

Complex NumbersComplex ConjugateNumber Systems
2025/5/10

We are given the equation $\frac{1}{x+iy} + \frac{1}{1+3i} = 1$, where $x$ and $y$ are real numbers,...

Complex NumbersEquation SolvingComplex Conjugate
2025/5/10