The problem asks to: a) Express $\frac{\sqrt{3}+1}{\sqrt{3}-1} + \sqrt{3} - 1$ in the form $a + b\sqrt{3}$ where $a$ and $b$ are rational numbers. b) Rationalize the denominator of each of the following expressions: (i) $\frac{2\sqrt{3}-\sqrt{2}}{4\sqrt{3}}$ (ii) $\frac{x}{x+\sqrt{y}}$ (iii) $\frac{2\sqrt{7}+\sqrt{3}}{3\sqrt{7}-\sqrt{3}}$ (iv) $\frac{x-\sqrt{x^2-9}}{x+\sqrt{x^2-9}}$ (v) $\frac{1}{(\sqrt{2}+1)(\sqrt{3}-1)}$ c) Rationalize the numerator of each of the following expressions: (i) $\frac{\sqrt{5+h}-3}{h}$ (ii) $\frac{\sqrt{3}+\sqrt{5}}{7}$ (iii) $\frac{\sqrt{x}-\sqrt{x+h}}{h\sqrt{x}+\sqrt{x+h}}$

AlgebraRationalizationRadicalsSimplificationAlgebraic Manipulation
2025/5/10

1. Problem Description

The problem asks to:
a) Express 3+131+31\frac{\sqrt{3}+1}{\sqrt{3}-1} + \sqrt{3} - 1 in the form a+b3a + b\sqrt{3} where aa and bb are rational numbers.
b) Rationalize the denominator of each of the following expressions:
(i) 23243\frac{2\sqrt{3}-\sqrt{2}}{4\sqrt{3}}
(ii) xx+y\frac{x}{x+\sqrt{y}}
(iii) 27+3373\frac{2\sqrt{7}+\sqrt{3}}{3\sqrt{7}-\sqrt{3}}
(iv) xx29x+x29\frac{x-\sqrt{x^2-9}}{x+\sqrt{x^2-9}}
(v) 1(2+1)(31)\frac{1}{(\sqrt{2}+1)(\sqrt{3}-1)}
c) Rationalize the numerator of each of the following expressions:
(i) 5+h3h\frac{\sqrt{5+h}-3}{h}
(ii) 3+57\frac{\sqrt{3}+\sqrt{5}}{7}
(iii) xx+hhx+x+h\frac{\sqrt{x}-\sqrt{x+h}}{h\sqrt{x}+\sqrt{x+h}}

2. Solution Steps

a) Express 3+131+31\frac{\sqrt{3}+1}{\sqrt{3}-1} + \sqrt{3} - 1 in the form a+b3a + b\sqrt{3}:
First, we rationalize the denominator of the first term:
3+131=(3+1)(3+1)(31)(3+1)=3+23+131=4+232=2+3\frac{\sqrt{3}+1}{\sqrt{3}-1} = \frac{(\sqrt{3}+1)(\sqrt{3}+1)}{(\sqrt{3}-1)(\sqrt{3}+1)} = \frac{3 + 2\sqrt{3} + 1}{3-1} = \frac{4+2\sqrt{3}}{2} = 2+\sqrt{3}.
Then, we add the remaining terms:
2+3+31=1+232 + \sqrt{3} + \sqrt{3} - 1 = 1 + 2\sqrt{3}.
Thus, a=1a=1 and b=2b=2.
b) Rationalize the denominator of each expression:
(i) 23243=(232)3433=6612\frac{2\sqrt{3}-\sqrt{2}}{4\sqrt{3}} = \frac{(2\sqrt{3}-\sqrt{2})\sqrt{3}}{4\sqrt{3}\sqrt{3}} = \frac{6 - \sqrt{6}}{12}
(ii) xx+y=x(xy)(x+y)(xy)=x(xy)x2y=x2xyx2y\frac{x}{x+\sqrt{y}} = \frac{x(x-\sqrt{y})}{(x+\sqrt{y})(x-\sqrt{y})} = \frac{x(x-\sqrt{y})}{x^2-y} = \frac{x^2 - x\sqrt{y}}{x^2-y}
(iii) 27+3373=(27+3)(37+3)(373)(37+3)=6(7)+221+321+39(7)3=42+521+3633=45+52160=9+2112\frac{2\sqrt{7}+\sqrt{3}}{3\sqrt{7}-\sqrt{3}} = \frac{(2\sqrt{7}+\sqrt{3})(3\sqrt{7}+\sqrt{3})}{(3\sqrt{7}-\sqrt{3})(3\sqrt{7}+\sqrt{3})} = \frac{6(7) + 2\sqrt{21} + 3\sqrt{21} + 3}{9(7)-3} = \frac{42 + 5\sqrt{21} + 3}{63-3} = \frac{45+5\sqrt{21}}{60} = \frac{9+\sqrt{21}}{12}
(iv) xx29x+x29=(xx29)(xx29)(x+x29)(xx29)=x22xx29+x29x2(x29)=2x292xx299\frac{x-\sqrt{x^2-9}}{x+\sqrt{x^2-9}} = \frac{(x-\sqrt{x^2-9})(x-\sqrt{x^2-9})}{(x+\sqrt{x^2-9})(x-\sqrt{x^2-9})} = \frac{x^2 - 2x\sqrt{x^2-9} + x^2 - 9}{x^2 - (x^2-9)} = \frac{2x^2-9 - 2x\sqrt{x^2-9}}{9}
(v) 1(2+1)(31)=(21)(3+1)(2+1)(21)(31)(3+1)=6+231(21)(31)=6+2312\frac{1}{(\sqrt{2}+1)(\sqrt{3}-1)} = \frac{(\sqrt{2}-1)(\sqrt{3}+1)}{(\sqrt{2}+1)(\sqrt{2}-1)(\sqrt{3}-1)(\sqrt{3}+1)} = \frac{\sqrt{6}+\sqrt{2}-\sqrt{3}-1}{(2-1)(3-1)} = \frac{\sqrt{6}+\sqrt{2}-\sqrt{3}-1}{2}
c) Rationalize the numerator of each expression:
(i) 5+h3h=(5+h3)(5+h+3)h(5+h+3)=(5+h)9h(5+h+3)=h4h(5+h+3)\frac{\sqrt{5+h}-3}{h} = \frac{(\sqrt{5+h}-3)(\sqrt{5+h}+3)}{h(\sqrt{5+h}+3)} = \frac{(5+h)-9}{h(\sqrt{5+h}+3)} = \frac{h-4}{h(\sqrt{5+h}+3)}
(ii) 3+57=(3+5)(35)7(35)=357(35)=27(35)=27(53)\frac{\sqrt{3}+\sqrt{5}}{7} = \frac{(\sqrt{3}+\sqrt{5})(\sqrt{3}-\sqrt{5})}{7(\sqrt{3}-\sqrt{5})} = \frac{3-5}{7(\sqrt{3}-\sqrt{5})} = \frac{-2}{7(\sqrt{3}-\sqrt{5})} = \frac{2}{7(\sqrt{5}-\sqrt{3})}
(iii) xx+hhx+x+h=(xx+h)(x+x+h)(hx+x+h)(x+x+h)=x(x+h)(hx+x+h)(x+x+h)=h(hx+x+h)(x+x+h)=hhx+hxx+h+xx+h+x+h=hhx+x+h+(h+1)x(x+h)=1x+(x+h)/h+(1+(1/h))x2+xh\frac{\sqrt{x}-\sqrt{x+h}}{h\sqrt{x}+\sqrt{x+h}} = \frac{(\sqrt{x}-\sqrt{x+h})(\sqrt{x}+\sqrt{x+h})}{(h\sqrt{x}+\sqrt{x+h})(\sqrt{x}+\sqrt{x+h})} = \frac{x-(x+h)}{(h\sqrt{x}+\sqrt{x+h})(\sqrt{x}+\sqrt{x+h})} = \frac{-h}{(h\sqrt{x}+\sqrt{x+h})(\sqrt{x}+\sqrt{x+h})} = \frac{-h}{h x + h\sqrt{x}\sqrt{x+h} + \sqrt{x}\sqrt{x+h} + x + h} = \frac{-h}{h x + x + h + (h+1)\sqrt{x(x+h)}} = \frac{-1}{x + (x+h)/h+ (1+(1/h))\sqrt{x^2+xh}}

3. Final Answer

a) 1+231 + 2\sqrt{3}
b)
(i) 6612\frac{6 - \sqrt{6}}{12}
(ii) x2xyx2y\frac{x^2 - x\sqrt{y}}{x^2-y}
(iii) 9+2112\frac{9+\sqrt{21}}{12}
(iv) 2x292xx299\frac{2x^2-9 - 2x\sqrt{x^2-9}}{9}
(v) 6+2312\frac{\sqrt{6}+\sqrt{2}-\sqrt{3}-1}{2}
c)
(i) h4h(5+h+3)\frac{h-4}{h(\sqrt{5+h}+3)}
(ii) 27(53)\frac{2}{7(\sqrt{5}-\sqrt{3})}
(iii) 1hx+x+h+(h+1)x(x+h)\frac{-1}{hx+x+h + (h+1)\sqrt{x(x+h)}}

Related problems in "Algebra"

The problem asks whether the provided graph represents a function and its inverse. The graph shows t...

FunctionsInverse FunctionsGraphsExponentialsLogarithmsCoordinate Geometry
2025/5/10

The problem asks to simplify the expression $4x^2 - 3x(2x - 5)$.

Polynomial simplificationAlgebraic manipulationExpanding expressions
2025/5/10

The problem consists of two parts. First, we need to find an expression for the amount of money Mary...

Algebraic ExpressionsSystems of EquationsLinear EquationsVariable SubstitutionSimplification
2025/5/10

We are asked to rationalize the numerator for each of the three given expressions. (i) $\frac{\sqrt{...

RadicalsRationalizationAlgebraic Manipulation
2025/5/10

The problem asks us to expand and simplify the expression $(a + 2)(a - 3) - 3(a - 5)$.

PolynomialsSimplificationExpandingCombining Like Terms
2025/5/10

The problem is to simplify the algebraic expression $5m - 2(x - 3m)$.

Algebraic ExpressionSimplificationCombining Like TermsDistribution
2025/5/10

We are given a complex number $z = x + iy$, where $z$ is non-zero. We need to: a) Express $\frac{1}{...

Complex NumbersComplex ConjugateAbsolute Value of Complex NumbersProofs
2025/5/10

Solve for $x$ and $y$ in the equation $\frac{x}{1+i} - \frac{y}{2-i} = \frac{1-5i}{3-2i}$.

Complex NumbersSystems of EquationsLinear Equations
2025/5/10

We are given several complex number problems. (2a) Express $\frac{1}{z}$ in the form $a + ib$, where...

Complex NumbersComplex ConjugateNumber Systems
2025/5/10

We are given the equation $\frac{1}{x+iy} + \frac{1}{1+3i} = 1$, where $x$ and $y$ are real numbers,...

Complex NumbersEquation SolvingComplex Conjugate
2025/5/10