a) Express 3 + 1 3 − 1 + 3 − 1 \frac{\sqrt{3}+1}{\sqrt{3}-1} + \sqrt{3} - 1 3 − 1 3 + 1 + 3 − 1 in the form a + b 3 a + b\sqrt{3} a + b 3 : First, we rationalize the denominator of the first term:
3 + 1 3 − 1 = ( 3 + 1 ) ( 3 + 1 ) ( 3 − 1 ) ( 3 + 1 ) = 3 + 2 3 + 1 3 − 1 = 4 + 2 3 2 = 2 + 3 \frac{\sqrt{3}+1}{\sqrt{3}-1} = \frac{(\sqrt{3}+1)(\sqrt{3}+1)}{(\sqrt{3}-1)(\sqrt{3}+1)} = \frac{3 + 2\sqrt{3} + 1}{3-1} = \frac{4+2\sqrt{3}}{2} = 2+\sqrt{3} 3 − 1 3 + 1 = ( 3 − 1 ) ( 3 + 1 ) ( 3 + 1 ) ( 3 + 1 ) = 3 − 1 3 + 2 3 + 1 = 2 4 + 2 3 = 2 + 3 . Then, we add the remaining terms:
2 + 3 + 3 − 1 = 1 + 2 3 2 + \sqrt{3} + \sqrt{3} - 1 = 1 + 2\sqrt{3} 2 + 3 + 3 − 1 = 1 + 2 3 . Thus, a = 1 a=1 a = 1 and b = 2 b=2 b = 2 .
b) Rationalize the denominator of each expression:
(i) 2 3 − 2 4 3 = ( 2 3 − 2 ) 3 4 3 3 = 6 − 6 12 \frac{2\sqrt{3}-\sqrt{2}}{4\sqrt{3}} = \frac{(2\sqrt{3}-\sqrt{2})\sqrt{3}}{4\sqrt{3}\sqrt{3}} = \frac{6 - \sqrt{6}}{12} 4 3 2 3 − 2 = 4 3 3 ( 2 3 − 2 ) 3 = 12 6 − 6
(ii) x x + y = x ( x − y ) ( x + y ) ( x − y ) = x ( x − y ) x 2 − y = x 2 − x y x 2 − y \frac{x}{x+\sqrt{y}} = \frac{x(x-\sqrt{y})}{(x+\sqrt{y})(x-\sqrt{y})} = \frac{x(x-\sqrt{y})}{x^2-y} = \frac{x^2 - x\sqrt{y}}{x^2-y} x + y x = ( x + y ) ( x − y ) x ( x − y ) = x 2 − y x ( x − y ) = x 2 − y x 2 − x y
(iii) 2 7 + 3 3 7 − 3 = ( 2 7 + 3 ) ( 3 7 + 3 ) ( 3 7 − 3 ) ( 3 7 + 3 ) = 6 ( 7 ) + 2 21 + 3 21 + 3 9 ( 7 ) − 3 = 42 + 5 21 + 3 63 − 3 = 45 + 5 21 60 = 9 + 21 12 \frac{2\sqrt{7}+\sqrt{3}}{3\sqrt{7}-\sqrt{3}} = \frac{(2\sqrt{7}+\sqrt{3})(3\sqrt{7}+\sqrt{3})}{(3\sqrt{7}-\sqrt{3})(3\sqrt{7}+\sqrt{3})} = \frac{6(7) + 2\sqrt{21} + 3\sqrt{21} + 3}{9(7)-3} = \frac{42 + 5\sqrt{21} + 3}{63-3} = \frac{45+5\sqrt{21}}{60} = \frac{9+\sqrt{21}}{12} 3 7 − 3 2 7 + 3 = ( 3 7 − 3 ) ( 3 7 + 3 ) ( 2 7 + 3 ) ( 3 7 + 3 ) = 9 ( 7 ) − 3 6 ( 7 ) + 2 21 + 3 21 + 3 = 63 − 3 42 + 5 21 + 3 = 60 45 + 5 21 = 12 9 + 21
(iv) x − x 2 − 9 x + x 2 − 9 = ( x − x 2 − 9 ) ( x − x 2 − 9 ) ( x + x 2 − 9 ) ( x − x 2 − 9 ) = x 2 − 2 x x 2 − 9 + x 2 − 9 x 2 − ( x 2 − 9 ) = 2 x 2 − 9 − 2 x x 2 − 9 9 \frac{x-\sqrt{x^2-9}}{x+\sqrt{x^2-9}} = \frac{(x-\sqrt{x^2-9})(x-\sqrt{x^2-9})}{(x+\sqrt{x^2-9})(x-\sqrt{x^2-9})} = \frac{x^2 - 2x\sqrt{x^2-9} + x^2 - 9}{x^2 - (x^2-9)} = \frac{2x^2-9 - 2x\sqrt{x^2-9}}{9} x + x 2 − 9 x − x 2 − 9 = ( x + x 2 − 9 ) ( x − x 2 − 9 ) ( x − x 2 − 9 ) ( x − x 2 − 9 ) = x 2 − ( x 2 − 9 ) x 2 − 2 x x 2 − 9 + x 2 − 9 = 9 2 x 2 − 9 − 2 x x 2 − 9
(v) 1 ( 2 + 1 ) ( 3 − 1 ) = ( 2 − 1 ) ( 3 + 1 ) ( 2 + 1 ) ( 2 − 1 ) ( 3 − 1 ) ( 3 + 1 ) = 6 + 2 − 3 − 1 ( 2 − 1 ) ( 3 − 1 ) = 6 + 2 − 3 − 1 2 \frac{1}{(\sqrt{2}+1)(\sqrt{3}-1)} = \frac{(\sqrt{2}-1)(\sqrt{3}+1)}{(\sqrt{2}+1)(\sqrt{2}-1)(\sqrt{3}-1)(\sqrt{3}+1)} = \frac{\sqrt{6}+\sqrt{2}-\sqrt{3}-1}{(2-1)(3-1)} = \frac{\sqrt{6}+\sqrt{2}-\sqrt{3}-1}{2} ( 2 + 1 ) ( 3 − 1 ) 1 = ( 2 + 1 ) ( 2 − 1 ) ( 3 − 1 ) ( 3 + 1 ) ( 2 − 1 ) ( 3 + 1 ) = ( 2 − 1 ) ( 3 − 1 ) 6 + 2 − 3 − 1 = 2 6 + 2 − 3 − 1
c) Rationalize the numerator of each expression:
(i) 5 + h − 3 h = ( 5 + h − 3 ) ( 5 + h + 3 ) h ( 5 + h + 3 ) = ( 5 + h ) − 9 h ( 5 + h + 3 ) = h − 4 h ( 5 + h + 3 ) \frac{\sqrt{5+h}-3}{h} = \frac{(\sqrt{5+h}-3)(\sqrt{5+h}+3)}{h(\sqrt{5+h}+3)} = \frac{(5+h)-9}{h(\sqrt{5+h}+3)} = \frac{h-4}{h(\sqrt{5+h}+3)} h 5 + h − 3 = h ( 5 + h + 3 ) ( 5 + h − 3 ) ( 5 + h + 3 ) = h ( 5 + h + 3 ) ( 5 + h ) − 9 = h ( 5 + h + 3 ) h − 4
(ii) 3 + 5 7 = ( 3 + 5 ) ( 3 − 5 ) 7 ( 3 − 5 ) = 3 − 5 7 ( 3 − 5 ) = − 2 7 ( 3 − 5 ) = 2 7 ( 5 − 3 ) \frac{\sqrt{3}+\sqrt{5}}{7} = \frac{(\sqrt{3}+\sqrt{5})(\sqrt{3}-\sqrt{5})}{7(\sqrt{3}-\sqrt{5})} = \frac{3-5}{7(\sqrt{3}-\sqrt{5})} = \frac{-2}{7(\sqrt{3}-\sqrt{5})} = \frac{2}{7(\sqrt{5}-\sqrt{3})} 7 3 + 5 = 7 ( 3 − 5 ) ( 3 + 5 ) ( 3 − 5 ) = 7 ( 3 − 5 ) 3 − 5 = 7 ( 3 − 5 ) − 2 = 7 ( 5 − 3 ) 2
(iii) x − x + h h x + x + h = ( x − x + h ) ( x + x + h ) ( h x + x + h ) ( x + x + h ) = x − ( x + h ) ( h x + x + h ) ( x + x + h ) = − h ( h x + x + h ) ( x + x + h ) = − h h x + h x x + h + x x + h + x + h = − h h x + x + h + ( h + 1 ) x ( x + h ) = − 1 x + ( x + h ) / h + ( 1 + ( 1 / h ) ) x 2 + x h \frac{\sqrt{x}-\sqrt{x+h}}{h\sqrt{x}+\sqrt{x+h}} = \frac{(\sqrt{x}-\sqrt{x+h})(\sqrt{x}+\sqrt{x+h})}{(h\sqrt{x}+\sqrt{x+h})(\sqrt{x}+\sqrt{x+h})} = \frac{x-(x+h)}{(h\sqrt{x}+\sqrt{x+h})(\sqrt{x}+\sqrt{x+h})} = \frac{-h}{(h\sqrt{x}+\sqrt{x+h})(\sqrt{x}+\sqrt{x+h})} = \frac{-h}{h x + h\sqrt{x}\sqrt{x+h} + \sqrt{x}\sqrt{x+h} + x + h} = \frac{-h}{h x + x + h + (h+1)\sqrt{x(x+h)}} = \frac{-1}{x + (x+h)/h+ (1+(1/h))\sqrt{x^2+xh}} h x + x + h x − x + h = ( h x + x + h ) ( x + x + h ) ( x − x + h ) ( x + x + h ) = ( h x + x + h ) ( x + x + h ) x − ( x + h ) = ( h x + x + h ) ( x + x + h ) − h = h x + h x x + h + x x + h + x + h − h = h x + x + h + ( h + 1 ) x ( x + h ) − h = x + ( x + h ) / h + ( 1 + ( 1/ h )) x 2 + x h − 1