First, let's simplify the equation by rationalizing the denominators:
1+ix=(1+i)(1−i)x(1−i)=1−i2x(1−i)=1−(−1)x(1−i)=2x(1−i) 2−iy=(2−i)(2+i)y(2+i)=4−i2y(2+i)=4−(−1)y(2+i)=5y(2+i) 3−2i1−5i=(3−2i)(3+2i)(1−5i)(3+2i)=9−4i23+2i−15i−10i2=9+43−13i+10=1313−13i=1−i Now we have:
2x(1−i)−5y(2+i)=1−i Multiply both sides by 10:
5x(1−i)−2y(2+i)=10(1−i) 5x−5xi−4y−2yi=10−10i Now, we can group the real and imaginary terms:
(5x−4y)+(−5x−2y)i=10−10i Equating the real and imaginary parts, we have the following system of equations:
5x−4y=10 −5x−2y=−10 Adding the two equations, we get:
Substituting y=0 into the first equation: 5x−4(0)=10