First, expand the expression:
bc(b−c)+ca(c−a)+ab(a−b)=b2c−bc2+c2a−ca2+a2b−ab2 Rearrange the terms:
b2c−bc2+c2a−ca2+a2b−ab2=b2c−ab2+a2b−ca2+c2a−bc2 Factorize by grouping:
b2c−ab2+a2b−ca2+c2a−bc2=b2(c−a)+b(a2−c2)+ac(c−a)+(a−c)(−ac)=b2(c−a)−b(c2−a2)+ac(c−a) b2(c−a)−b(c−a)(c+a)+ac(c−a)=(c−a)[b2−b(c+a)+ac] (c−a)[b2−bc−ba+ac]=(c−a)[b(b−c)−a(b−c)]=(c−a)(b−a)(b−c) Rearranging the terms:
(c−a)(b−a)(b−c)=−(a−c)(−(a−b))(b−c)=(a−c)(a−b)(b−c) (a−b)(b−c)(a−c)=(a−b)(b−c)(c−a)(−1)=−(a−b)(b−c)(c−a) Let's rearrange the terms to get −(a−b)(b−c)(c−a)=(b−a)(c−b)(a−c) b2c−bc2+c2a−ca2+a2b−ab2=−(a−b)(b−c)(c−a) =−(a−b)(bc−c2−ba+ac)=−(abc−ac2−a2b+a2c−b2c+bc2+ab2−abc) =−(−ac2−a2b+a2c−b2c+bc2+ab2) =ac2+a2b−a2c+b2c−bc2−ab2 Rearranging the original expression:
=−(a−b)(b−c)(c−a)