Solve the equation $\frac{x}{1+i} - \frac{4}{2-i} = \frac{1-5i}{3-2i}$ for $x$.

AlgebraComplex NumbersComplex Number ArithmeticEquation Solving
2025/5/11

1. Problem Description

Solve the equation x1+i42i=15i32i\frac{x}{1+i} - \frac{4}{2-i} = \frac{1-5i}{3-2i} for xx.

2. Solution Steps

First, we isolate the term with xx:
x1+i=15i32i+42i\frac{x}{1+i} = \frac{1-5i}{3-2i} + \frac{4}{2-i}
Next, we simplify the terms on the right side. To divide complex numbers, we multiply the numerator and denominator by the complex conjugate of the denominator.
15i32i=(15i)(3+2i)(32i)(3+2i)=3+2i15i10i294i2=313i+109+4=1313i13=1i\frac{1-5i}{3-2i} = \frac{(1-5i)(3+2i)}{(3-2i)(3+2i)} = \frac{3+2i-15i-10i^2}{9-4i^2} = \frac{3-13i+10}{9+4} = \frac{13-13i}{13} = 1-i
42i=4(2+i)(2i)(2+i)=8+4i4i2=8+4i4+1=8+4i5=85+45i\frac{4}{2-i} = \frac{4(2+i)}{(2-i)(2+i)} = \frac{8+4i}{4-i^2} = \frac{8+4i}{4+1} = \frac{8+4i}{5} = \frac{8}{5} + \frac{4}{5}i
Substituting these back into the equation:
x1+i=(1i)+(85+45i)=(1+85)+(1+45)i=13515i\frac{x}{1+i} = (1-i) + (\frac{8}{5} + \frac{4}{5}i) = (1+\frac{8}{5}) + (-1+\frac{4}{5})i = \frac{13}{5} - \frac{1}{5}i
Multiply both sides by 1+i1+i to solve for xx:
x=(1+i)(13515i)=13515i+135i15i2=135+125i+15=145+125ix = (1+i)(\frac{13}{5} - \frac{1}{5}i) = \frac{13}{5} - \frac{1}{5}i + \frac{13}{5}i - \frac{1}{5}i^2 = \frac{13}{5} + \frac{12}{5}i + \frac{1}{5} = \frac{14}{5} + \frac{12}{5}i

3. Final Answer

x=145+125ix = \frac{14}{5} + \frac{12}{5}i