First, we isolate the term with x: 1+ix=3−2i1−5i+2−i4 Next, we simplify the terms on the right side. To divide complex numbers, we multiply the numerator and denominator by the complex conjugate of the denominator.
3−2i1−5i=(3−2i)(3+2i)(1−5i)(3+2i)=9−4i23+2i−15i−10i2=9+43−13i+10=1313−13i=1−i 2−i4=(2−i)(2+i)4(2+i)=4−i28+4i=4+18+4i=58+4i=58+54i Substituting these back into the equation:
1+ix=(1−i)+(58+54i)=(1+58)+(−1+54)i=513−51i Multiply both sides by 1+i to solve for x: x=(1+i)(513−51i)=513−51i+513i−51i2=513+512i+51=514+512i