We are asked to find the critical points of the following three functions and classify them as local maxima, local minima, or saddle points: 8. $f(x, y) = e^{-(x^2 + y^2 - 4y)}$ 9. $f(x, y) = \cos x + \cos y + \cos(x + y)$ with $0 < x < \frac{\pi}{2}$ and $0 < y < \frac{\pi}{2}$ 10. $f(x, y) = x^2 + a^2 - 2ax \cos y$ with $-\pi < y < \pi$

AnalysisMultivariable CalculusCritical PointsLocal MaximaLocal MinimaSaddle PointsPartial Derivatives
2025/5/12

1. Problem Description

We are asked to find the critical points of the following three functions and classify them as local maxima, local minima, or saddle points:

8. $f(x, y) = e^{-(x^2 + y^2 - 4y)}$

9. $f(x, y) = \cos x + \cos y + \cos(x + y)$ with $0 < x < \frac{\pi}{2}$ and $0 < y < \frac{\pi}{2}$

1

0. $f(x, y) = x^2 + a^2 - 2ax \cos y$ with $-\pi < y < \pi$

2. Solution Steps

8. $f(x, y) = e^{-(x^2 + y^2 - 4y)}$

fx=e(x2+y24y)(2x)=2xe(x2+y24y)f_x = e^{-(x^2 + y^2 - 4y)} (-2x) = -2x e^{-(x^2 + y^2 - 4y)}
fy=e(x2+y24y)(2y+4)=(42y)e(x2+y24y)f_y = e^{-(x^2 + y^2 - 4y)} (-2y + 4) = (4 - 2y) e^{-(x^2 + y^2 - 4y)}
To find the critical points, we set fx=0f_x = 0 and fy=0f_y = 0.
2xe(x2+y24y)=0-2x e^{-(x^2 + y^2 - 4y)} = 0, so x=0x = 0.
(42y)e(x2+y24y)=0(4 - 2y) e^{-(x^2 + y^2 - 4y)} = 0, so 42y=04 - 2y = 0, which implies y=2y = 2.
The critical point is (0,2)(0, 2).
fxx=2e(x2+y24y)+(2x)2e(x2+y24y)=(2+4x2)e(x2+y24y)f_{xx} = -2 e^{-(x^2 + y^2 - 4y)} + (-2x)^2 e^{-(x^2 + y^2 - 4y)} = (-2 + 4x^2) e^{-(x^2 + y^2 - 4y)}
fyy=2e(x2+y24y)+(42y)2e(x2+y24y)=(2+(42y)2)e(x2+y24y)f_{yy} = -2 e^{-(x^2 + y^2 - 4y)} + (4 - 2y)^2 e^{-(x^2 + y^2 - 4y)} = (-2 + (4 - 2y)^2) e^{-(x^2 + y^2 - 4y)}
fxy=(2x)(42y)e(x2+y24y)f_{xy} = (-2x)(4 - 2y) e^{-(x^2 + y^2 - 4y)}
At (0,2)(0, 2):
fxx(0,2)=2e(0+48)=2e4f_{xx}(0, 2) = -2 e^{-(0 + 4 - 8)} = -2 e^4
fyy(0,2)=2e(0+48)=2e4f_{yy}(0, 2) = -2 e^{-(0 + 4 - 8)} = -2 e^4
fxy(0,2)=0f_{xy}(0, 2) = 0
D=fxxfyyfxy2=(2e4)(2e4)02=4e8>0D = f_{xx} f_{yy} - f_{xy}^2 = (-2 e^4) (-2 e^4) - 0^2 = 4 e^8 > 0.
Since fxx(0,2)=2e4<0f_{xx}(0, 2) = -2 e^4 < 0, the critical point (0,2)(0, 2) is a local maximum.

9. $f(x, y) = \cos x + \cos y + \cos(x + y)$ with $0 < x < \frac{\pi}{2}$ and $0 < y < \frac{\pi}{2}$

fx=sinxsin(x+y)f_x = -\sin x - \sin(x + y)
fy=sinysin(x+y)f_y = -\sin y - \sin(x + y)
Setting fx=0f_x = 0 and fy=0f_y = 0, we have
sinx=sin(x+y)\sin x = -\sin(x + y) and siny=sin(x+y)\sin y = -\sin(x + y).
Thus, sinx=siny\sin x = \sin y, and since 0<x<π20 < x < \frac{\pi}{2} and 0<y<π20 < y < \frac{\pi}{2}, we have x=yx = y.
So sinx=sin(2x)=2sinxcosx\sin x = -\sin(2x) = -2 \sin x \cos x.
sinx+2sinxcosx=0\sin x + 2 \sin x \cos x = 0, sinx(1+2cosx)=0\sin x (1 + 2 \cos x) = 0.
Since sinx0\sin x \ne 0, 1+2cosx=01 + 2 \cos x = 0, so cosx=12\cos x = -\frac{1}{2}. Thus, x=2π3x = \frac{2 \pi}{3}.
Since we require 0<x<π20 < x < \frac{\pi}{2}, there is no critical point.
However, the image shows 0<x<π20 < x < \frac{\pi}{2} and 0<y<π20 < y < \frac{\pi}{2}. There appears to be a mistake, then.
If x=yx = y still holds, then sinx=sin(2x)\sin x = -\sin(2x) becomes sin(x)+sin(2x)=0\sin(x) + \sin(2x) = 0.
So sin(x)(1+2cos(x))=0\sin(x) (1 + 2 \cos(x)) = 0, which gives sin(x)=0\sin(x) = 0 or cos(x)=12\cos(x) = -\frac{1}{2}.
If sin(x)=0\sin(x) = 0, then x=0x=0 which is outside the range.
If cos(x)=12\cos(x) = -\frac{1}{2}, then x=2π3x = \frac{2\pi}{3}, which is also outside the range. So no critical points exist in (0,π2)×(0,π2)(0, \frac{\pi}{2}) \times (0, \frac{\pi}{2}).
1

0. $f(x, y) = x^2 + a^2 - 2ax \cos y$ with $-\pi < y < \pi$

fx=2x2acosyf_x = 2x - 2a \cos y
fy=2axsinyf_y = 2ax \sin y
Setting fx=0f_x = 0 and fy=0f_y = 0,
2x2acosy=02x - 2a \cos y = 0, so x=acosyx = a \cos y.
2axsiny=02ax \sin y = 0.
If a=0a = 0, then x=0x = 0 and f(x,y)=x2f(x, y) = x^2. Thus f(0,y)=0f(0,y) = 0, any yy can work.
If a0a \neq 0, then either x=0x = 0 or siny=0\sin y = 0.
If x=0x = 0, then 0=acosy0 = a \cos y. Since a0a \neq 0, cosy=0\cos y = 0, so y=±π2y = \pm \frac{\pi}{2}.
If siny=0\sin y = 0, then y=0y = 0 or y=πy = \pi or y=πy = -\pi. (Since π<y<π-\pi < y < \pi, y=πy=\pi and y=πy=-\pi represent the same value).
When y=0y = 0, x=acos0=ax = a \cos 0 = a.
When y=πy = \pi, x=acosπ=ax = a \cos \pi = -a.
So we have the critical points (0,π2)(0, \frac{\pi}{2}), (0,π2)(0, -\frac{\pi}{2}), (a,0)(a, 0), (a,π)(-a, \pi).
fxx=2f_{xx} = 2
fyy=2axcosyf_{yy} = -2ax \cos y
fxy=2asinyf_{xy} = 2a \sin y
At (0,π2)(0, \frac{\pi}{2}), fxx=2f_{xx} = 2, fyy=0f_{yy} = 0, fxy=2af_{xy} = 2a.
D=(2)(0)(2a)2=4a2<0D = (2)(0) - (2a)^2 = -4a^2 < 0. Saddle point.
At (0,π2)(0, -\frac{\pi}{2}), fxx=2f_{xx} = 2, fyy=0f_{yy} = 0, fxy=2af_{xy} = -2a.
D=(2)(0)(2a)2=4a2<0D = (2)(0) - (-2a)^2 = -4a^2 < 0. Saddle point.
At (a,0)(a, 0), fxx=2f_{xx} = 2, fyy=2a2f_{yy} = -2a^2, fxy=0f_{xy} = 0.
D=(2)(2a2)02=4a2D = (2)(-2a^2) - 0^2 = -4a^2. Since a0a \ne 0, then 4a2<0-4a^2 < 0. Saddle point.
At (a,π)(-a, \pi), fxx=2f_{xx} = 2, fyy=2a2f_{yy} = 2a^2, fxy=0f_{xy} = 0.
D=(2)(2a2)02=4a2>0D = (2)(2a^2) - 0^2 = 4a^2 > 0. Since fxx=2>0f_{xx} = 2 > 0, this is a local minimum.

3. Final Answer

8. Critical point: $(0, 2)$. Local maximum.

9. No critical points in the given domain.

1

0. Critical points: $(0, \frac{\pi}{2})$, $(0, -\frac{\pi}{2})$, $(a, 0)$, $(-a, \pi)$.

(0,π2)(0, \frac{\pi}{2}) and (0,π2)(0, -\frac{\pi}{2}) are saddle points.
(a,0)(a, 0) is a saddle point.
(a,π)(-a, \pi) is a local minimum.
If a=0a = 0, then f(x,y)=x2f(x, y) = x^2, thus f(0,y)=0f(0,y) = 0. fx=2x=0f_x = 2x = 0 at x=0x=0. fxx=2f_{xx}=2. So a local minimum at x=0, for any yy.
For part 10 if a=0a = 0 we have critical point (0,y)(0,y) for any yy. It is a local minimum. If a0a \neq 0, the answer above is good.

Related problems in "Analysis"

We want to find the Fourier series representation of the function $f(x) = x$ on the interval $-\pi <...

Fourier SeriesIntegrationTrigonometric FunctionsCalculus
2025/5/13

The problem asks us to find the range of $\theta$ such that the infinite series $\sum_{n=1}^{\infty}...

Infinite SeriesConvergenceTrigonometryInequalities
2025/5/13

The problem asks to prove the formula for the Fourier sine series coefficient $b_n$ for a function $...

Fourier SeriesTrigonometric FunctionsOrthogonalityIntegration
2025/5/13

The problem asks us to construct the Fourier series of the function $f(x) = x$ on the interval $-\pi...

Fourier SeriesTrigonometric FunctionsIntegrationCalculus
2025/5/13

The problem seems to involve analysis of a function $f(x) = -x - \frac{4}{x}$. It asks about limits ...

Function AnalysisDerivativesLimitsDomainInequalities
2025/5/13

From what I can decipher, the problem involves analyzing a function $f(x) = -x - \frac{4}{x}$ and an...

LimitsDerivativesAsymptotesFunction Analysis
2025/5/13

The image appears to present several math problems related to limits, derivatives, and inequalities....

LimitsDerivativesInequalitiesFunction AnalysisCalculus
2025/5/13

The problem seems to ask to find the derivative of the function $y = f(x) = \ln(x + \sqrt{1+x^2})$.

CalculusDifferentiationChain RuleLogarithmic FunctionsDerivatives
2025/5/13

The problem asks us to evaluate the definite integral: $A(R) = \int_{-3}^1 (\frac{4-\sqrt{4-4y}}{2} ...

Definite IntegralIntegration TechniquesSubstitutionCalculus
2025/5/12

Given the function $g(x) = 3x^4 - 2x^2 + 49$, we need to find the first and second derivatives, $g'(...

CalculusDerivativesFirst DerivativeSecond DerivativeSign AnalysisPolynomial Functions
2025/5/12