The problem asks to find the expression for $\frac{f(x+h) - f(x)}{h}$ given that $f(x) = x^2 - 1$.

AlgebraFunctionsAlgebraic ManipulationDifference QuotientCalculus (Precursor)
2025/3/21

1. Problem Description

The problem asks to find the expression for f(x+h)f(x)h\frac{f(x+h) - f(x)}{h} given that f(x)=x21f(x) = x^2 - 1.

2. Solution Steps

First, find the expression for f(x+h)f(x+h).
f(x+h)=(x+h)21=x2+2xh+h21f(x+h) = (x+h)^2 - 1 = x^2 + 2xh + h^2 - 1.
Next, calculate f(x+h)f(x)f(x+h) - f(x).
f(x+h)f(x)=(x2+2xh+h21)(x21)=x2+2xh+h21x2+1=2xh+h2f(x+h) - f(x) = (x^2 + 2xh + h^2 - 1) - (x^2 - 1) = x^2 + 2xh + h^2 - 1 - x^2 + 1 = 2xh + h^2.
Now, divide the result by hh.
f(x+h)f(x)h=2xh+h2h=h(2x+h)h=2x+h\frac{f(x+h) - f(x)}{h} = \frac{2xh + h^2}{h} = \frac{h(2x + h)}{h} = 2x + h.

3. Final Answer

The final answer is 2x+h2x + h. The correct option is (c).

Related problems in "Algebra"