The problem asks us to multiply the binomials $(a-5)$, $(4+a)$, and $(3-2a)$ together and simplify the resulting expression. The expression given as the current answer, $-45a+30a^2-60+40a$, must be simplified.

AlgebraPolynomialsBinomialsSimplificationExpansionAlgebraic Manipulation
2025/3/21

1. Problem Description

The problem asks us to multiply the binomials (a5)(a-5), (4+a)(4+a), and (32a)(3-2a) together and simplify the resulting expression. The expression given as the current answer, 45a+30a260+40a-45a+30a^2-60+40a, must be simplified.

2. Solution Steps

First, we multiply the first two binomials:
(a5)(4+a)=a(4)+a(a)5(4)5(a)=4a+a2205a=a2a20(a-5)(4+a) = a(4) + a(a) - 5(4) - 5(a) = 4a + a^2 - 20 - 5a = a^2 - a - 20.
Now, we multiply the result by the third binomial (32a)(3-2a):
(a2a20)(32a)=a2(3)+a2(2a)a(3)a(2a)20(3)20(2a)=3a22a33a+2a260+40a(a^2 - a - 20)(3-2a) = a^2(3) + a^2(-2a) - a(3) - a(-2a) - 20(3) - 20(-2a) = 3a^2 - 2a^3 - 3a + 2a^2 - 60 + 40a.
Combining like terms, we have:
2a3+(3a2+2a2)+(3a+40a)60=2a3+5a2+37a60-2a^3 + (3a^2 + 2a^2) + (-3a + 40a) - 60 = -2a^3 + 5a^2 + 37a - 60.

3. Final Answer

-2a^3+5a^2+37a-60