We will use the following trigonometric identity to simplify the integrand:
sin2x=21−cos(2x). So, the integral becomes:
∫0πsin2xdx=∫0π21−cos(2x)dx =21∫0π(1−cos(2x))dx =21[∫0π1dx−∫0πcos(2x)dx] =21[x0π−21sin(2x)0π] =21[(π−0)−21(sin(2π)−sin(0))] =21[π−21(0−0)] =21π=2π.