We are asked to evaluate the following iterated integrals: 1. $\int_0^2 \int_0^3 (9-x) dy dx$

AnalysisMultivariable CalculusIterated IntegralsIntegration
2025/5/16

1. Problem Description

We are asked to evaluate the following iterated integrals:

1. $\int_0^2 \int_0^3 (9-x) dy dx$

2. $\int_{-2}^2 \int_0^1 (9-x^2) dy dx$

3. $\int_0^2 \int_1^3 x^2y dy dx$

4. $\int_{-1}^4 \int_1^2 (x+y^2) dy dx$

2. Solution Steps

1. $\int_0^2 \int_0^3 (9-x) dy dx$

First, integrate with respect to yy:
03(9x)dy=(9x)03dy=(9x)[y]03=(9x)(30)=3(9x)=273x\int_0^3 (9-x) dy = (9-x) \int_0^3 dy = (9-x)[y]_0^3 = (9-x)(3-0) = 3(9-x) = 27-3x.
Now, integrate with respect to xx:
02(273x)dx=[27x32x2]02=(27(2)32(2)2)(0)=5432(4)=546=48\int_0^2 (27-3x) dx = [27x - \frac{3}{2}x^2]_0^2 = (27(2) - \frac{3}{2}(2)^2) - (0) = 54 - \frac{3}{2}(4) = 54-6 = 48.

2. $\int_{-2}^2 \int_0^1 (9-x^2) dy dx$

First, integrate with respect to yy:
01(9x2)dy=(9x2)01dy=(9x2)[y]01=(9x2)(10)=9x2\int_0^1 (9-x^2) dy = (9-x^2) \int_0^1 dy = (9-x^2)[y]_0^1 = (9-x^2)(1-0) = 9-x^2.
Now, integrate with respect to xx:
22(9x2)dx=[9x13x3]22=(9(2)13(2)3)(9(2)13(2)3)=(1883)(18+83)=1883+1883=36163=108163=923\int_{-2}^2 (9-x^2) dx = [9x - \frac{1}{3}x^3]_{-2}^2 = (9(2) - \frac{1}{3}(2)^3) - (9(-2) - \frac{1}{3}(-2)^3) = (18 - \frac{8}{3}) - (-18 + \frac{8}{3}) = 18 - \frac{8}{3} + 18 - \frac{8}{3} = 36 - \frac{16}{3} = \frac{108-16}{3} = \frac{92}{3}.

3. $\int_0^2 \int_1^3 x^2y dy dx$

First, integrate with respect to yy:
13x2ydy=x213ydy=x2[12y2]13=x2(12(32)12(12))=x2(9212)=x2(82)=4x2\int_1^3 x^2y dy = x^2 \int_1^3 y dy = x^2 [\frac{1}{2}y^2]_1^3 = x^2 (\frac{1}{2}(3^2) - \frac{1}{2}(1^2)) = x^2 (\frac{9}{2} - \frac{1}{2}) = x^2(\frac{8}{2}) = 4x^2.
Now, integrate with respect to xx:
024x2dx=402x2dx=4[13x3]02=4(13(23)0)=4(83)=323\int_0^2 4x^2 dx = 4 \int_0^2 x^2 dx = 4[\frac{1}{3}x^3]_0^2 = 4(\frac{1}{3}(2^3) - 0) = 4(\frac{8}{3}) = \frac{32}{3}.

4. $\int_{-1}^4 \int_1^2 (x+y^2) dy dx$

First, integrate with respect to yy:
12(x+y2)dy=[xy+13y3]12=(x(2)+13(23))(x(1)+13(13))=(2x+83)(x+13)=2x+83x13=x+73\int_1^2 (x+y^2) dy = [xy + \frac{1}{3}y^3]_1^2 = (x(2) + \frac{1}{3}(2^3)) - (x(1) + \frac{1}{3}(1^3)) = (2x + \frac{8}{3}) - (x + \frac{1}{3}) = 2x + \frac{8}{3} - x - \frac{1}{3} = x + \frac{7}{3}.
Now, integrate with respect to xx:
14(x+73)dx=[12x2+73x]14=(12(42)+73(4))(12(1)2+73(1))=(8+283)(1273)=8+28312+73=8+35312=486+70636=1156\int_{-1}^4 (x+\frac{7}{3}) dx = [\frac{1}{2}x^2 + \frac{7}{3}x]_{-1}^4 = (\frac{1}{2}(4^2) + \frac{7}{3}(4)) - (\frac{1}{2}(-1)^2 + \frac{7}{3}(-1)) = (8 + \frac{28}{3}) - (\frac{1}{2} - \frac{7}{3}) = 8 + \frac{28}{3} - \frac{1}{2} + \frac{7}{3} = 8 + \frac{35}{3} - \frac{1}{2} = \frac{48}{6} + \frac{70}{6} - \frac{3}{6} = \frac{115}{6}.

3. Final Answer

1. 48

2. 92/3

3. 32/3

4. 115/6

Related problems in "Analysis"

We are given the expression $a_n = \frac{\ln(\frac{1}{n})}{\sqrt{2n}}$ and we need to analyze it. Th...

LimitsL'Hopital's RuleLogarithms
2025/6/6

We are given the sequence $a_n = \frac{\ln n}{\sqrt{n}}$. We want to find the limit of the sequence ...

LimitsL'Hopital's RuleSequencesCalculus
2025/6/6

We are asked to find the limit of the expression $\frac{n^{100}}{e^n}$ as $n$ approaches infinity.

LimitsL'Hopital's RuleExponential Functions
2025/6/6

We are given the sequence $a_n = (\frac{1}{4})^n + \frac{3n}{2}$.

SequencesSeriesExponentialsLinear Functions
2025/6/6

The problem asks us to analyze the sequence $a_n$ defined by $a_n = \frac{(-\pi)^n}{5^n}$. The most...

SequencesLimitsGeometric SequencesConvergenceDivergence
2025/6/6

The problem asks us to find the limit of the sequence $a_n = \frac{\sqrt{3n^2 + 2}}{2n + 1}$ as $n$ ...

LimitsSequencesCalculus
2025/6/6

The problem asks us to find several limits and analyze the continuity of functions. We will tackle e...

LimitsContinuityPiecewise FunctionsDirect Substitution
2025/6/6

We are asked to solve four problems: 2.1. Use the Intermediate Value Theorem to show that there is a...

Intermediate Value TheoremLimitsPrecise Definition of LimitTrigonometric Limits
2025/6/6

The problem consists of 5 parts. 1.1. Given two functions $f(x)$ and $g(x)$, we need to find their d...

Domain and RangeContinuityLimitsPiecewise FunctionsAbsolute Value FunctionsFloor Function
2025/6/6

We need to find the limit of the given functions in 2.1 (a), (b), (c), (d), and (e).

LimitsCalculusTrigonometric LimitsPiecewise Functions
2025/6/6