First, we rewrite the differential equation as:
sinxy′=y3 y′=y3sinx dxdy=y3sinx Now, we separate the variables:
y3dy=sinxdx Integrate both sides:
∫y3dy=∫sinxdx ∫y−3dy=∫sinxdx −2y−2=−cosx+C −2y21=−cosx+C 2y21=cosx−C 2y2=cosx−C1 y2=2(cosx−C)1 y=±2(cosx−C)1 y=±2(cosx−C)1