We are asked to evaluate several iterated integrals.

AnalysisIterated IntegralsMultivariable CalculusIntegration
2025/5/18

1. Problem Description

We are asked to evaluate several iterated integrals.

2. Solution Steps

1. $\int_{0}^{1} \int_{0}^{3x} x^2 \, dy \, dx$

First, integrate with respect to yy:
03xx2dy=x203x1dy=x2[y]03x=x2(3x0)=3x3\int_{0}^{3x} x^2 \, dy = x^2 \int_{0}^{3x} 1 \, dy = x^2 [y]_{0}^{3x} = x^2(3x - 0) = 3x^3
Now, integrate with respect to xx:
013x3dx=301x3dx=3[x44]01=3(144044)=3(14)=34\int_{0}^{1} 3x^3 \, dx = 3 \int_{0}^{1} x^3 \, dx = 3 \left[ \frac{x^4}{4} \right]_{0}^{1} = 3 \left( \frac{1^4}{4} - \frac{0^4}{4} \right) = 3 \left( \frac{1}{4} \right) = \frac{3}{4}

2. $\int_{1}^{2} \int_{0}^{x-1} y \, dy \, dx$

First, integrate with respect to yy:
0x1ydy=[y22]0x1=(x1)22022=(x1)22=x22x+12\int_{0}^{x-1} y \, dy = \left[ \frac{y^2}{2} \right]_{0}^{x-1} = \frac{(x-1)^2}{2} - \frac{0^2}{2} = \frac{(x-1)^2}{2} = \frac{x^2 - 2x + 1}{2}
Now, integrate with respect to xx:
12x22x+12dx=1212(x22x+1)dx=12[x33x2+x]12=12[(23322+2)(13312+1)]=12[(834+2)(131+1)]=12[83213]=12[732]=12[7363]=12(13)=16\int_{1}^{2} \frac{x^2 - 2x + 1}{2} \, dx = \frac{1}{2} \int_{1}^{2} (x^2 - 2x + 1) \, dx = \frac{1}{2} \left[ \frac{x^3}{3} - x^2 + x \right]_{1}^{2} = \frac{1}{2} \left[ \left( \frac{2^3}{3} - 2^2 + 2 \right) - \left( \frac{1^3}{3} - 1^2 + 1 \right) \right] = \frac{1}{2} \left[ \left( \frac{8}{3} - 4 + 2 \right) - \left( \frac{1}{3} - 1 + 1 \right) \right] = \frac{1}{2} \left[ \frac{8}{3} - 2 - \frac{1}{3} \right] = \frac{1}{2} \left[ \frac{7}{3} - 2 \right] = \frac{1}{2} \left[ \frac{7}{3} - \frac{6}{3} \right] = \frac{1}{2} \left( \frac{1}{3} \right) = \frac{1}{6}

3. $\int_{-1}^{3} \int_{0}^{3y} (x^2 + y^2) \, dx \, dy$

First, integrate with respect to xx:
03y(x2+y2)dx=[x33+y2x]03y=((3y)33+y2(3y))(033+y2(0))=27y33+3y3=9y3+3y3=12y3\int_{0}^{3y} (x^2 + y^2) \, dx = \left[ \frac{x^3}{3} + y^2 x \right]_{0}^{3y} = \left( \frac{(3y)^3}{3} + y^2(3y) \right) - \left( \frac{0^3}{3} + y^2(0) \right) = \frac{27y^3}{3} + 3y^3 = 9y^3 + 3y^3 = 12y^3
Now, integrate with respect to yy:
1312y3dy=1213y3dy=12[y44]13=12(344(1)44)=12(81414)=12(804)=12(20)=240\int_{-1}^{3} 12y^3 \, dy = 12 \int_{-1}^{3} y^3 \, dy = 12 \left[ \frac{y^4}{4} \right]_{-1}^{3} = 12 \left( \frac{3^4}{4} - \frac{(-1)^4}{4} \right) = 12 \left( \frac{81}{4} - \frac{1}{4} \right) = 12 \left( \frac{80}{4} \right) = 12(20) = 240

4. $\int_{-3}^{1} \int_{0}^{x} (x^2 - y^3) \, dy \, dx$

First, integrate with respect to yy:
0x(x2y3)dy=[x2yy44]0x=(x2(x)x44)(x2(0)044)=x3x44\int_{0}^{x} (x^2 - y^3) \, dy = \left[ x^2 y - \frac{y^4}{4} \right]_{0}^{x} = \left( x^2(x) - \frac{x^4}{4} \right) - \left( x^2(0) - \frac{0^4}{4} \right) = x^3 - \frac{x^4}{4}
Now, integrate with respect to xx:
31(x3x44)dx=[x44x520]31=(1441520)((3)44(3)520)=(14120)(81424320)=(520120)(40520+24320)=42064820=64420=1615\int_{-3}^{1} (x^3 - \frac{x^4}{4}) \, dx = \left[ \frac{x^4}{4} - \frac{x^5}{20} \right]_{-3}^{1} = \left( \frac{1^4}{4} - \frac{1^5}{20} \right) - \left( \frac{(-3)^4}{4} - \frac{(-3)^5}{20} \right) = \left( \frac{1}{4} - \frac{1}{20} \right) - \left( \frac{81}{4} - \frac{-243}{20} \right) = \left( \frac{5}{20} - \frac{1}{20} \right) - \left( \frac{405}{20} + \frac{243}{20} \right) = \frac{4}{20} - \frac{648}{20} = \frac{-644}{20} = \frac{-161}{5}

5. $\int_{1}^{3} \int_{-y}^{2y} xe^{y^3} \, dx \, dy$

First, integrate with respect to xx:
y2yxey3dx=ey3y2yxdx=ey3[x22]y2y=ey3((2y)22(y)22)=ey3(4y22y22)=ey3(3y22)=32y2ey3\int_{-y}^{2y} xe^{y^3} \, dx = e^{y^3} \int_{-y}^{2y} x \, dx = e^{y^3} \left[ \frac{x^2}{2} \right]_{-y}^{2y} = e^{y^3} \left( \frac{(2y)^2}{2} - \frac{(-y)^2}{2} \right) = e^{y^3} \left( \frac{4y^2}{2} - \frac{y^2}{2} \right) = e^{y^3} \left( \frac{3y^2}{2} \right) = \frac{3}{2} y^2 e^{y^3}
Now, integrate with respect to yy:
1332y2ey3dy\int_{1}^{3} \frac{3}{2} y^2 e^{y^3} \, dy
Let u=y3u = y^3, then du=3y2dydu = 3y^2 \, dy. When y=1y=1, u=1u=1. When y=3y=3, u=27u=27.
12712eudu=12127eudu=12[eu]127=12(e27e1)=12(e27e)\int_{1}^{27} \frac{1}{2} e^u \, du = \frac{1}{2} \int_{1}^{27} e^u \, du = \frac{1}{2} [e^u]_{1}^{27} = \frac{1}{2} (e^{27} - e^1) = \frac{1}{2} (e^{27} - e)

3. Final Answer

1. $\frac{3}{4}$

2. $\frac{1}{6}$

3. $240$

4. $\frac{-161}{5}$

5. $\frac{e^{27}-e}{2}$

Related problems in "Analysis"

We are asked to solve the Cauchy problem for the differential equation $y'' - 3y' = 0$ with initial ...

Differential EquationsCauchy ProblemSecond-order Linear Differential EquationInitial Value ProblemCharacteristic EquationHomogeneous Equation
2025/5/19

Evaluate the double integral $\iint_S x \, dA$, where $S$ is the region between the curves $y = x$ a...

Double IntegralsRegion of IntegrationCalculusIntegration
2025/5/19

We need to evaluate the double integral $\iint_S \frac{2}{1+x^2} dA$, where $S$ is the triangular re...

Double IntegralsMultivariable CalculusIntegrationAreaTrigonometric FunctionsLogarithmic Functions
2025/5/19

We are asked to evaluate six iterated integrals.

Iterated IntegralsDouble IntegralsCalculus
2025/5/18

The problem states that we have a function $f_a(x) = x^3 - 1 - a(x-1)$ and its graph $C_a$ depending...

CalculusFunctionsDerivativesTangentsCurve sketchingPolynomials
2025/5/18

The problem asks us to solve the Cauchy problem, which is the initial value problem for the differen...

Differential EquationsCauchy ProblemInitial Value ProblemIntegration
2025/5/18

We are asked to solve the following differential equation: $\frac{y'}{\sin x} - y^3 = 0$.

Differential EquationsSeparation of VariablesIntegration
2025/5/18

The problem asks us to solve a first-order linear differential equation using Bernoulli's method. Th...

Differential EquationsBernoulli EquationFirst-Order Differential EquationsSolution Methods
2025/5/18

We are asked to solve the differential equation $xy' + y = x^3$.

Differential EquationsFirst-Order Linear Differential EquationIntegration
2025/5/18

We are given the differential equation $y'' + 3y' + 2y = \frac{x-1}{x^2}e^{-x}$ (E). 1. We need to ...

Differential EquationsSecond OrderLinear Differential EquationsParticular SolutionHomogeneous Equation
2025/5/18