We are asked to evaluate six iterated integrals.

AnalysisIterated IntegralsDouble IntegralsCalculus
2025/5/18

1. Problem Description

We are asked to evaluate six iterated integrals.

2. Solution Steps

1. $\int_{0}^{\pi/2}\int_{0}^{cos\theta} r^2 \sin\theta \, dr \, d\theta$

First integrate with respect to rr:
0cosθr2sinθdr=sinθ0cosθr2dr=sinθ[r33]0cosθ=sinθ(cos3θ30)=13cos3θsinθ\int_{0}^{cos\theta} r^2 \sin\theta \, dr = \sin\theta \int_{0}^{cos\theta} r^2 \, dr = \sin\theta \left[ \frac{r^3}{3} \right]_0^{cos\theta} = \sin\theta \left(\frac{cos^3\theta}{3} - 0\right) = \frac{1}{3} \cos^3\theta \sin\theta
Now integrate with respect to θ\theta:
0π/213cos3θsinθdθ\int_{0}^{\pi/2} \frac{1}{3} \cos^3\theta \sin\theta \, d\theta
Let u=cosθu = \cos\theta, du=sinθdθdu = -\sin\theta \, d\theta.
When θ=0\theta = 0, u=1u = 1. When θ=π/2\theta = \pi/2, u=0u = 0.
1310u3(du)=1310u3du=1301u3du=13[u44]01=13(140)=112\frac{1}{3} \int_{1}^{0} u^3 (-du) = -\frac{1}{3} \int_{1}^{0} u^3 \, du = \frac{1}{3} \int_{0}^{1} u^3 \, du = \frac{1}{3} \left[ \frac{u^4}{4} \right]_0^1 = \frac{1}{3} \left( \frac{1}{4} - 0 \right) = \frac{1}{12}

2. $\int_{0}^{\pi/2} \int_{0}^{sin\theta} r \, dr \, d\theta$

First integrate with respect to rr:
0sinθrdr=[r22]0sinθ=sin2θ2\int_{0}^{sin\theta} r \, dr = \left[ \frac{r^2}{2} \right]_{0}^{sin\theta} = \frac{sin^2\theta}{2}
Now integrate with respect to θ\theta:
0π/2sin2θ2dθ=120π/2sin2θdθ\int_{0}^{\pi/2} \frac{sin^2\theta}{2} \, d\theta = \frac{1}{2} \int_{0}^{\pi/2} sin^2\theta \, d\theta
We use the identity sin2θ=1cos(2θ)2sin^2\theta = \frac{1 - cos(2\theta)}{2}.
120π/21cos(2θ)2dθ=140π/2(1cos(2θ))dθ=14[θ12sin(2θ)]0π/2=14[π212sin(π)(012sin(0))]=14[π200]=π8\frac{1}{2} \int_{0}^{\pi/2} \frac{1 - cos(2\theta)}{2} \, d\theta = \frac{1}{4} \int_{0}^{\pi/2} (1 - cos(2\theta)) \, d\theta = \frac{1}{4} \left[ \theta - \frac{1}{2}sin(2\theta) \right]_0^{\pi/2} = \frac{1}{4} \left[ \frac{\pi}{2} - \frac{1}{2}sin(\pi) - (0 - \frac{1}{2}sin(0)) \right] = \frac{1}{4} \left[ \frac{\pi}{2} - 0 - 0 \right] = \frac{\pi}{8}

3. $\int_{0}^{\pi} \int_{0}^{sin\theta} r^2 \, dr \, d\theta$

First integrate with respect to rr:
0sinθr2dr=[r33]0sinθ=sin3θ3\int_{0}^{sin\theta} r^2 \, dr = \left[ \frac{r^3}{3} \right]_{0}^{sin\theta} = \frac{sin^3\theta}{3}
Now integrate with respect to θ\theta:
0πsin3θ3dθ=130πsin3θdθ\int_{0}^{\pi} \frac{sin^3\theta}{3} \, d\theta = \frac{1}{3} \int_{0}^{\pi} sin^3\theta \, d\theta
We know that sin3θ=sinθ(sin2θ)=sinθ(1cos2θ)=sinθsinθcos2θsin^3\theta = sin\theta (sin^2\theta) = sin\theta (1 - cos^2\theta) = sin\theta - sin\theta cos^2\theta
130π(sinθsinθcos2θ)dθ=13[cosθ+cos3θ3]0π=13[cos(π)+cos3(π)3(cos(0)+cos3(0)3)]=13[(1)+(1)33(1+13)]=13[113(23)]=13[113+23]=13[31+23]=13[43]=49\frac{1}{3} \int_{0}^{\pi} (sin\theta - sin\theta cos^2\theta) \, d\theta = \frac{1}{3} \left[ -cos\theta + \frac{cos^3\theta}{3} \right]_0^{\pi} = \frac{1}{3} \left[ -cos(\pi) + \frac{cos^3(\pi)}{3} - (-cos(0) + \frac{cos^3(0)}{3}) \right] = \frac{1}{3} \left[ -(-1) + \frac{(-1)^3}{3} - (-1 + \frac{1}{3}) \right] = \frac{1}{3} \left[ 1 - \frac{1}{3} - (-\frac{2}{3}) \right] = \frac{1}{3} \left[ 1 - \frac{1}{3} + \frac{2}{3} \right] = \frac{1}{3} \left[ \frac{3 - 1 + 2}{3} \right] = \frac{1}{3} \left[ \frac{4}{3} \right] = \frac{4}{9}

4. $\int_{0}^{\pi} \int_{0}^{1-cos\theta} r \sin\theta \, dr \, d\theta$

First integrate with respect to rr:
01cosθrsinθdr=sinθ01cosθrdr=sinθ[r22]01cosθ=sinθ(1cosθ)22=12sinθ(12cosθ+cos2θ)\int_{0}^{1-cos\theta} r \sin\theta \, dr = \sin\theta \int_{0}^{1-cos\theta} r \, dr = \sin\theta \left[ \frac{r^2}{2} \right]_{0}^{1-cos\theta} = \sin\theta \frac{(1-cos\theta)^2}{2} = \frac{1}{2} \sin\theta (1 - 2cos\theta + cos^2\theta)
Now integrate with respect to θ\theta:
120π(sinθ2cosθsinθ+cos2θsinθ)dθ=12[cosθ+cos2θcos3θ3]0π=12[(cos(π)+cos2(π)cos3(π)3)(cos(0)+cos2(0)cos3(0)3)]=12[((1)+(1)2(1)33)(1+113)]=12[(1+1+13)(013)]=12[2+13+13]=12[2+23]=12[83]=43\frac{1}{2} \int_{0}^{\pi} (\sin\theta - 2cos\theta \sin\theta + cos^2\theta \sin\theta) \, d\theta = \frac{1}{2} \left[ -cos\theta + cos^2\theta - \frac{cos^3\theta}{3} \right]_0^{\pi} = \frac{1}{2} \left[ (-cos(\pi) + cos^2(\pi) - \frac{cos^3(\pi)}{3}) - (-cos(0) + cos^2(0) - \frac{cos^3(0)}{3}) \right] = \frac{1}{2} \left[ (-(-1) + (-1)^2 - \frac{(-1)^3}{3}) - (-1 + 1 - \frac{1}{3}) \right] = \frac{1}{2} \left[ (1 + 1 + \frac{1}{3}) - (0 - \frac{1}{3}) \right] = \frac{1}{2} \left[ 2 + \frac{1}{3} + \frac{1}{3} \right] = \frac{1}{2} \left[ 2 + \frac{2}{3} \right] = \frac{1}{2} \left[ \frac{8}{3} \right] = \frac{4}{3}

5. $\int_{0}^{\pi} \int_{0}^{2} r cos(\frac{\theta}{4}) \, dr \, d\theta$

First integrate with respect to rr:
02rcos(θ4)dr=cos(θ4)02rdr=cos(θ4)[r22]02=cos(θ4)(42)=2cos(θ4)\int_{0}^{2} r cos(\frac{\theta}{4}) \, dr = cos(\frac{\theta}{4}) \int_{0}^{2} r \, dr = cos(\frac{\theta}{4}) \left[ \frac{r^2}{2} \right]_0^2 = cos(\frac{\theta}{4}) (\frac{4}{2}) = 2cos(\frac{\theta}{4})
Now integrate with respect to θ\theta:
0π2cos(θ4)dθ=20πcos(θ4)dθ=2[4sin(θ4)]0π=8[sin(π4)sin(0)]=8[220]=822=42\int_{0}^{\pi} 2cos(\frac{\theta}{4}) \, d\theta = 2 \int_{0}^{\pi} cos(\frac{\theta}{4}) \, d\theta = 2 \left[ 4sin(\frac{\theta}{4}) \right]_{0}^{\pi} = 8 \left[ sin(\frac{\pi}{4}) - sin(0) \right] = 8 \left[ \frac{\sqrt{2}}{2} - 0 \right] = 8 \cdot \frac{\sqrt{2}}{2} = 4\sqrt{2}

6. $\int_{0}^{2\pi} \int_{0}^{\theta} r \, dr \, d\theta$

First integrate with respect to rr:
0θrdr=[r22]0θ=θ22\int_{0}^{\theta} r \, dr = \left[ \frac{r^2}{2} \right]_{0}^{\theta} = \frac{\theta^2}{2}
Now integrate with respect to θ\theta:
02πθ22dθ=1202πθ2dθ=12[θ33]02π=12[(2π)330]=128π33=4π33\int_{0}^{2\pi} \frac{\theta^2}{2} \, d\theta = \frac{1}{2} \int_{0}^{2\pi} \theta^2 \, d\theta = \frac{1}{2} \left[ \frac{\theta^3}{3} \right]_{0}^{2\pi} = \frac{1}{2} \left[ \frac{(2\pi)^3}{3} - 0 \right] = \frac{1}{2} \frac{8\pi^3}{3} = \frac{4\pi^3}{3}

3. Final Answer

1. 1/12

2. $\pi/8$

3. 4/9

4. 4/3

5. $4\sqrt{2}$

6. $\frac{4\pi^3}{3}$

Related problems in "Analysis"

We are asked to solve the Cauchy problem for the differential equation $y'' - 3y' = 0$ with initial ...

Differential EquationsCauchy ProblemSecond-order Linear Differential EquationInitial Value ProblemCharacteristic EquationHomogeneous Equation
2025/5/19

Evaluate the double integral $\iint_S x \, dA$, where $S$ is the region between the curves $y = x$ a...

Double IntegralsRegion of IntegrationCalculusIntegration
2025/5/19

We need to evaluate the double integral $\iint_S \frac{2}{1+x^2} dA$, where $S$ is the triangular re...

Double IntegralsMultivariable CalculusIntegrationAreaTrigonometric FunctionsLogarithmic Functions
2025/5/19

We are asked to evaluate several iterated integrals.

Iterated IntegralsMultivariable CalculusIntegration
2025/5/18

The problem states that we have a function $f_a(x) = x^3 - 1 - a(x-1)$ and its graph $C_a$ depending...

CalculusFunctionsDerivativesTangentsCurve sketchingPolynomials
2025/5/18

The problem asks us to solve the Cauchy problem, which is the initial value problem for the differen...

Differential EquationsCauchy ProblemInitial Value ProblemIntegration
2025/5/18

We are asked to solve the following differential equation: $\frac{y'}{\sin x} - y^3 = 0$.

Differential EquationsSeparation of VariablesIntegration
2025/5/18

The problem asks us to solve a first-order linear differential equation using Bernoulli's method. Th...

Differential EquationsBernoulli EquationFirst-Order Differential EquationsSolution Methods
2025/5/18

We are asked to solve the differential equation $xy' + y = x^3$.

Differential EquationsFirst-Order Linear Differential EquationIntegration
2025/5/18

We are given the differential equation $y'' + 3y' + 2y = \frac{x-1}{x^2}e^{-x}$ (E). 1. We need to ...

Differential EquationsSecond OrderLinear Differential EquationsParticular SolutionHomogeneous Equation
2025/5/18