The problem is to simplify the expression $1 \div 2 \cdot \sqrt{x^{-3}}$.

AlgebraSimplificationRadicalsExponentsRationalization
2025/3/8

1. Problem Description

The problem is to simplify the expression 1÷2x31 \div 2 \cdot \sqrt{x^{-3}}.

2. Solution Steps

First, we rewrite the division as multiplication by the reciprocal:
1÷2=112=121 \div 2 = 1 \cdot \frac{1}{2} = \frac{1}{2}
So the expression becomes:
12x3\frac{1}{2} \cdot \sqrt{x^{-3}}
Recall that xn=1xnx^{-n} = \frac{1}{x^n}. Then x3=1x3x^{-3} = \frac{1}{x^3}. The expression becomes:
121x3\frac{1}{2} \cdot \sqrt{\frac{1}{x^3}}
We can rewrite the square root as:
1x3=1x3=1x3\sqrt{\frac{1}{x^3}} = \frac{\sqrt{1}}{\sqrt{x^3}} = \frac{1}{\sqrt{x^3}}
Then the expression is:
121x3=12x3\frac{1}{2} \cdot \frac{1}{\sqrt{x^3}} = \frac{1}{2\sqrt{x^3}}
We can rewrite x3\sqrt{x^3} as x32x^{\frac{3}{2}}.
Then the expression is:
12x32\frac{1}{2x^{\frac{3}{2}}}
We can also write x3=x2xx^3 = x^2 \cdot x, so x3=x2x=x2x=xx\sqrt{x^3} = \sqrt{x^2 \cdot x} = \sqrt{x^2}\cdot\sqrt{x} = x\sqrt{x}.
Then the expression is:
12xx\frac{1}{2x\sqrt{x}}
To rationalize the denominator, multiply by xx\frac{\sqrt{x}}{\sqrt{x}}:
12xxxx=x2xx=x2x2\frac{1}{2x\sqrt{x}} \cdot \frac{\sqrt{x}}{\sqrt{x}} = \frac{\sqrt{x}}{2x \cdot x} = \frac{\sqrt{x}}{2x^2}

3. Final Answer

x2x2\frac{\sqrt{x}}{2x^2}

Related problems in "Algebra"

The problem asks us to find the value of $t$ such that $\frac{2+\sqrt{3}}{1-\sqrt{t}} = \frac{-4}{2-...

EquationsRadicalsSimplificationSolving Equations
2025/4/4

(a) Find the binomial expansion of $(1-y)^6$ and simplify all terms. (b) Substitute $y = x - x^2$ in...

Binomial TheoremPolynomial ExpansionAlgebraic Manipulation
2025/4/4

The problem defines two functions $f(x) = 2x + 3$ and $g(x) = \frac{1}{3}(x - 3)$. We need to find $...

FunctionsInverse FunctionsFunction Composition
2025/4/4

(a) Express $\frac{1}{x^2(2x-1)}$ in partial fractions. (b) Find the value of $x$ for which $6\sqrt{...

Partial FractionsEquationsRadicalsSolving Equations
2025/4/4

The problem asks us to express the given rational function $\frac{1}{x^2(2x-1)}$ in partial fraction...

Partial FractionsRational FunctionsAlgebraic ManipulationDecomposition
2025/4/4

The problem asks to evaluate two expressions: a) $log_{\frac{1}{9}}27$ b) $5^{3log_5 20}$

LogarithmsExponent PropertiesSimplification
2025/4/4

A binary operation $\Delta$ is defined on the set of real numbers $R$ by $a \Delta b = a + b + 4ab$....

Binary OperationEquation SolvingReal Numbers
2025/4/4

We are given that $\log_{10} a = x$, $\log_{10} b = y$, and $\log_{10} c = z$. We need to express $\...

LogarithmsLogarithmic PropertiesAlgebraic Manipulation
2025/4/4

We are given the inequality $x^2 - 10x + c > 0$. We need to find the range of values for the constan...

Quadratic InequalitiesDiscriminantCompleting the Square
2025/4/4

We are given that $x^2 + 2x - 8$ is a factor of the polynomial $f(x) = ax^3 - 4x^2 - 28x - 16$. We n...

PolynomialsFactorizationPolynomial DivisionRemainder Theorem
2025/4/4