Adding the three equations, we get:
x + y + z = y 2 − 1 16 + z 2 − 1 16 + z 2 − 1 25 + x 2 − 1 25 + x 2 − 1 36 + y 2 − 1 36 x+y+z = \sqrt{y^2 - \frac{1}{16}} + \sqrt{z^2 - \frac{1}{16}} + \sqrt{z^2 - \frac{1}{25}} + \sqrt{x^2 - \frac{1}{25}} + \sqrt{x^2 - \frac{1}{36}} + \sqrt{y^2 - \frac{1}{36}} x + y + z = y 2 − 16 1 + z 2 − 16 1 + z 2 − 25 1 + x 2 − 25 1 + x 2 − 36 1 + y 2 − 36 1 x + y + z = ( x 2 − 1 25 + x 2 − 1 36 ) + ( y 2 − 1 16 + y 2 − 1 36 ) + ( z 2 − 1 16 + z 2 − 1 25 ) x+y+z = (\sqrt{x^2 - \frac{1}{25}} + \sqrt{x^2 - \frac{1}{36}}) + (\sqrt{y^2 - \frac{1}{16}} + \sqrt{y^2 - \frac{1}{36}}) + (\sqrt{z^2 - \frac{1}{16}} + \sqrt{z^2 - \frac{1}{25}}) x + y + z = ( x 2 − 25 1 + x 2 − 36 1 ) + ( y 2 − 16 1 + y 2 − 36 1 ) + ( z 2 − 16 1 + z 2 − 25 1 )
Consider the case where x = y = z x=y=z x = y = z . Then the equations become:
x = x 2 − 1 16 + x 2 − 1 16 x = \sqrt{x^2 - \frac{1}{16}} + \sqrt{x^2 - \frac{1}{16}} x = x 2 − 16 1 + x 2 − 16 1 x = 2 x 2 − 1 16 x = 2\sqrt{x^2 - \frac{1}{16}} x = 2 x 2 − 16 1 x 2 = 4 ( x 2 − 1 16 ) x^2 = 4(x^2 - \frac{1}{16}) x 2 = 4 ( x 2 − 16 1 ) x 2 = 4 x 2 − 4 16 x^2 = 4x^2 - \frac{4}{16} x 2 = 4 x 2 − 16 4 3 x 2 = 1 4 3x^2 = \frac{1}{4} 3 x 2 = 4 1 x 2 = 1 12 x^2 = \frac{1}{12} x 2 = 12 1 x = 1 12 = 1 2 3 = 3 6 x = \frac{1}{\sqrt{12}} = \frac{1}{2\sqrt{3}} = \frac{\sqrt{3}}{6} x = 12 1 = 2 3 1 = 6 3 Similarly,
x = x 2 − 1 25 + x 2 − 1 25 x = \sqrt{x^2 - \frac{1}{25}} + \sqrt{x^2 - \frac{1}{25}} x = x 2 − 25 1 + x 2 − 25 1 x = 2 x 2 − 1 25 x = 2\sqrt{x^2 - \frac{1}{25}} x = 2 x 2 − 25 1 x 2 = 4 x 2 − 4 25 x^2 = 4x^2 - \frac{4}{25} x 2 = 4 x 2 − 25 4 3 x 2 = 4 25 3x^2 = \frac{4}{25} 3 x 2 = 25 4 x 2 = 4 75 x^2 = \frac{4}{75} x 2 = 75 4 x = 2 75 = 2 5 3 = 2 3 15 x = \frac{2}{\sqrt{75}} = \frac{2}{5\sqrt{3}} = \frac{2\sqrt{3}}{15} x = 75 2 = 5 3 2 = 15 2 3 And,
x = x 2 − 1 36 + x 2 − 1 36 x = \sqrt{x^2 - \frac{1}{36}} + \sqrt{x^2 - \frac{1}{36}} x = x 2 − 36 1 + x 2 − 36 1 x = 2 x 2 − 1 36 x = 2\sqrt{x^2 - \frac{1}{36}} x = 2 x 2 − 36 1 x 2 = 4 x 2 − 4 36 x^2 = 4x^2 - \frac{4}{36} x 2 = 4 x 2 − 36 4 3 x 2 = 1 9 3x^2 = \frac{1}{9} 3 x 2 = 9 1 x 2 = 1 27 x^2 = \frac{1}{27} x 2 = 27 1 x = 1 27 = 1 3 3 = 3 9 x = \frac{1}{\sqrt{27}} = \frac{1}{3\sqrt{3}} = \frac{\sqrt{3}}{9} x = 27 1 = 3 3 1 = 9 3 This cannot happen, because x, y and z have different values in this case.
Assume that x , y , z > 0 x, y, z > 0 x , y , z > 0 . Consider x = a / 4 x = a/4 x = a /4 , y = a / 5 y = a/5 y = a /5 , z = a / 6 z = a/6 z = a /6 . Then x = a 2 25 − 1 16 + a 2 36 − 1 16 x = \sqrt{\frac{a^2}{25} - \frac{1}{16}} + \sqrt{\frac{a^2}{36} - \frac{1}{16}} x = 25 a 2 − 16 1 + 36 a 2 − 16 1 y = a 2 36 − 1 25 + a 2 16 − 1 25 y = \sqrt{\frac{a^2}{36} - \frac{1}{25}} + \sqrt{\frac{a^2}{16} - \frac{1}{25}} y = 36 a 2 − 25 1 + 16 a 2 − 25 1 z = a 2 16 − 1 36 + a 2 25 − 1 36 z = \sqrt{\frac{a^2}{16} - \frac{1}{36}} + \sqrt{\frac{a^2}{25} - \frac{1}{36}} z = 16 a 2 − 36 1 + 25 a 2 − 36 1 Let x = 5 / 12 x=5/12 x = 5/12 , y = 4 / 12 = 1 / 3 y = 4/12 = 1/3 y = 4/12 = 1/3 , z = 5 / 18 z=5/18 z = 5/18 . Then x = y = z x=y=z x = y = z . Nope.
x = x 2 − 1 16 + x 2 − 1 16 x = \sqrt{x^2 - \frac{1}{16}} + \sqrt{x^2 - \frac{1}{16}} x = x 2 − 16 1 + x 2 − 16 1 x = 2 x 2 − 1 16 x = 2 \sqrt{x^2 - \frac{1}{16}} x = 2 x 2 − 16 1 x 2 = 4 ( x 2 − 1 16 ) x^2 = 4 (x^2 - \frac{1}{16}) x 2 = 4 ( x 2 − 16 1 ) x 2 = 4 x 2 − 1 4 x^2 = 4 x^2 - \frac{1}{4} x 2 = 4 x 2 − 4 1 3 x 2 = 1 4 3 x^2 = \frac{1}{4} 3 x 2 = 4 1 x 2 = 1 12 x^2 = \frac{1}{12} x 2 = 12 1 x = 1 2 3 = 3 6 x = \frac{1}{2\sqrt{3}} = \frac{\sqrt{3}}{6} x = 2 3 1 = 6 3
Similarly, x = 2 3 15 x = \frac{2\sqrt{3}}{15} x = 15 2 3 and x = 3 9 x = \frac{\sqrt{3}}{9} x = 9 3 . So we don't have x = y = z x=y=z x = y = z .
Suppose x = 5 / 12 x=5/12 x = 5/12 , y = 1 / 3 y=1/3 y = 1/3 , z = 5 / 18 z=5/18 z = 5/18 . We are looking for a solution x = 5 / 12 , y = 4 / 12 = 1 / 3 , z = 10 / 36 = 5 / 18 x=5/12, y=4/12=1/3, z=10/36=5/18 x = 5/12 , y = 4/12 = 1/3 , z = 10/36 = 5/18 . Then x + y + z = 5 / 12 + 4 / 12 + 5 / 18 = 9 / 12 + 5 / 18 = 3 / 4 + 5 / 18 = ( 27 + 10 ) / 36 = 37 / 36 x+y+z = 5/12+4/12+5/18 = 9/12+5/18 = 3/4+5/18 = (27+10)/36 = 37/36 x + y + z = 5/12 + 4/12 + 5/18 = 9/12 + 5/18 = 3/4 + 5/18 = ( 27 + 10 ) /36 = 37/36 . Then 7 ( x + y + z ) 2 = 7 ( 37 / 36 ) 2 = 7 ( 1369 / 1296 ) = 9583 / 1296 = 7.39 7(x+y+z)^2 = 7(37/36)^2 = 7 (1369/1296) = 9583/1296 = 7.39 7 ( x + y + z ) 2 = 7 ( 37/36 ) 2 = 7 ( 1369/1296 ) = 9583/1296 = 7.39 .
If we assume x , y , z x, y, z x , y , z satisfy x = 1 4 x = \frac{1}{4} x = 4 1 , y = 1 5 y = \frac{1}{5} y = 5 1 , z = 1 6 z = \frac{1}{6} z = 6 1 . Then: x = 1 25 − 1 16 + 1 36 − 1 16 x = \sqrt{\frac{1}{25} - \frac{1}{16}} + \sqrt{\frac{1}{36} - \frac{1}{16}} x = 25 1 − 16 1 + 36 1 − 16 1 y = 1 36 − 1 25 + 1 16 − 1 25 y = \sqrt{\frac{1}{36} - \frac{1}{25}} + \sqrt{\frac{1}{16} - \frac{1}{25}} y = 36 1 − 25 1 + 16 1 − 25 1 z = 1 16 − 1 36 + 1 25 − 1 36 z = \sqrt{\frac{1}{16} - \frac{1}{36}} + \sqrt{\frac{1}{25} - \frac{1}{36}} z = 16 1 − 36 1 + 25 1 − 36 1
This is impossible. Try setting x 2 = y 2 = z 2 = u 2 x^2=y^2=z^2 = u^2 x 2 = y 2 = z 2 = u 2 . Then: x = u 2 − 1 16 + u 2 − 1 16 = 2 u 2 − 1 16 x = \sqrt{u^2 - \frac{1}{16}} + \sqrt{u^2 - \frac{1}{16}} = 2 \sqrt{u^2 - \frac{1}{16}} x = u 2 − 16 1 + u 2 − 16 1 = 2 u 2 − 16 1 y = u 2 − 1 25 + u 2 − 1 25 = 2 u 2 − 1 25 y = \sqrt{u^2 - \frac{1}{25}} + \sqrt{u^2 - \frac{1}{25}} = 2 \sqrt{u^2 - \frac{1}{25}} y = u 2 − 25 1 + u 2 − 25 1 = 2 u 2 − 25 1 z = u 2 − 1 36 + u 2 − 1 36 = 2 u 2 − 1 36 z = \sqrt{u^2 - \frac{1}{36}} + \sqrt{u^2 - \frac{1}{36}} = 2 \sqrt{u^2 - \frac{1}{36}} z = u 2 − 36 1 + u 2 − 36 1 = 2 u 2 − 36 1
x 2 = 1 16 x^2= \frac{1}{16} x 2 = 16 1 , y 2 = 1 25 y^2= \frac{1}{25} y 2 = 25 1 , z 2 = 1 36 z^2= \frac{1}{36} z 2 = 36 1 . Then x = 1 / 4 x = 1/4 x = 1/4 , y = 1 / 5 y=1/5 y = 1/5 , z = 1 / 6 z=1/6 z = 1/6 . 1 4 = 2 1 25 − 1 16 \frac{1}{4} = 2 \sqrt{\frac{1}{25} - \frac{1}{16}} 4 1 = 2 25 1 − 16 1 . Invalid since 1 25 − 1 16 \frac{1}{25} - \frac{1}{16} 25 1 − 16 1 is negative.
Consider x = y = z = u x=y=z=u x = y = z = u . Then u = 2 u 2 − 1 16 u = 2\sqrt{u^2 - \frac{1}{16}} u = 2 u 2 − 16 1 , u = 2 u 2 − 1 25 u = 2\sqrt{u^2 - \frac{1}{25}} u = 2 u 2 − 25 1 , u = 2 u 2 − 1 36 u = 2\sqrt{u^2 - \frac{1}{36}} u = 2 u 2 − 36 1 . This cannot be. 4 u 2 = 1 4 u^2 = 1 4 u 2 = 1 . u = 1 2 u = \frac{1}{2} u = 2 1 The only possible solution appears to be x = y = z = 0 x=y=z=0 x = y = z = 0 . Then 0 = − 1 16 + − 1 16 0 = \sqrt{-\frac{1}{16}} + \sqrt{-\frac{1}{16}} 0 = − 16 1 + − 16 1 .
Consider the following: x = 1 / 2 x=1/2 x = 1/2 , y = 1 / 2 y=1/2 y = 1/2 , z = 1 / 2 z=1/2 z = 1/2 . x + y + z = 3 / 2 x+y+z = 3/2 x + y + z = 3/2 . 7 ( x + y + z ) 2 = 7 ( 9 / 4 ) = 63 / 4 = 15.75 7(x+y+z)^2 = 7(9/4) = 63/4 = 15.75 7 ( x + y + z ) 2 = 7 ( 9/4 ) = 63/4 = 15.75 .
If x = y = z = 1 x=y=z=1 x = y = z = 1 , 7 ( x + y + z ) 2 = 7 ( 3 2 ) = 7 ∗ 9 = 63 7(x+y+z)^2 = 7(3^2) = 7*9 = 63 7 ( x + y + z ) 2 = 7 ( 3 2 ) = 7 ∗ 9 = 63 .