We are asked to find a formula for each of the given summations. a) $\sum_{i=1}^{n} (\sqrt{2i+1} - \sqrt{2i-1})$ b) $\sum_{k=1}^{100} \ln(\frac{k}{k+2})$ c) $\sum_{k=1}^{n} \frac{4}{(4k-3)(4k+1)}$ d) $\sum_{k=1}^{n} \frac{2^k + 3^k}{6^k}$ e) $\sum_{k=1}^{n} \frac{\sqrt{k+1} - \sqrt{k}}{\sqrt{k^2 + k}}$

AlgebraSummationSeriesTelescoping SumGeometric SeriesPartial FractionsLogarithms
2025/5/24

1. Problem Description

We are asked to find a formula for each of the given summations.
a) i=1n(2i+12i1)\sum_{i=1}^{n} (\sqrt{2i+1} - \sqrt{2i-1})
b) k=1100ln(kk+2)\sum_{k=1}^{100} \ln(\frac{k}{k+2})
c) k=1n4(4k3)(4k+1)\sum_{k=1}^{n} \frac{4}{(4k-3)(4k+1)}
d) k=1n2k+3k6k\sum_{k=1}^{n} \frac{2^k + 3^k}{6^k}
e) k=1nk+1kk2+k\sum_{k=1}^{n} \frac{\sqrt{k+1} - \sqrt{k}}{\sqrt{k^2 + k}}

2. Solution Steps

a) i=1n(2i+12i1)\sum_{i=1}^{n} (\sqrt{2i+1} - \sqrt{2i-1})
This is a telescoping sum. We can write out the first few terms:
(31)+(53)+(75)+...+(2n+12n1)(\sqrt{3}-\sqrt{1}) + (\sqrt{5}-\sqrt{3}) + (\sqrt{7}-\sqrt{5}) + ... + (\sqrt{2n+1} - \sqrt{2n-1})
The intermediate terms cancel out, leaving us with
2n+11=2n+11\sqrt{2n+1} - \sqrt{1} = \sqrt{2n+1} - 1
b) k=1100ln(kk+2)\sum_{k=1}^{100} \ln(\frac{k}{k+2})
Using properties of logarithms, we can write this as
k=1100(ln(k)ln(k+2))\sum_{k=1}^{100} (\ln(k) - \ln(k+2))
This is also a telescoping sum. Writing out the first few terms:
(ln(1)ln(3))+(ln(2)ln(4))+(ln(3)ln(5))+(ln(4)ln(6))+...+(ln(99)ln(101))+(ln(100)ln(102))(\ln(1) - \ln(3)) + (\ln(2) - \ln(4)) + (\ln(3) - \ln(5)) + (\ln(4) - \ln(6)) + ... + (\ln(99) - \ln(101)) + (\ln(100) - \ln(102))
We have ln(1)+ln(2)ln(101)ln(102)=ln(1)+ln(2)ln(101)ln(102)=ln(1)+ln(2)ln(101102)=ln(210302)=ln(15151)\ln(1) + \ln(2) - \ln(101) - \ln(102) = \ln(1) + \ln(2) - \ln(101) - \ln(102) = \ln(1) + \ln(2) - \ln(101 \cdot 102) = \ln(\frac{2}{10302}) = \ln(\frac{1}{5151})
Therefore the sum is ln(1)+ln(2)ln(101)ln(102)=ln(12)ln(101102)=ln(2)ln(10302)=ln(210302)=ln(15151)=ln(5151)\ln(1) + \ln(2) - \ln(101) - \ln(102) = \ln(1*2) - \ln(101*102) = \ln(2) - \ln(10302) = \ln(\frac{2}{10302}) = \ln(\frac{1}{5151}) = -\ln(5151)
c) k=1n4(4k3)(4k+1)\sum_{k=1}^{n} \frac{4}{(4k-3)(4k+1)}
We can decompose the fraction using partial fractions:
4(4k3)(4k+1)=A4k3+B4k+1\frac{4}{(4k-3)(4k+1)} = \frac{A}{4k-3} + \frac{B}{4k+1}
4=A(4k+1)+B(4k3)4 = A(4k+1) + B(4k-3)
Let k=34k = \frac{3}{4}. Then 4=A(4(34)+1)+B(0)    4=4A    A=14 = A(4(\frac{3}{4}) + 1) + B(0) \implies 4 = 4A \implies A=1
Let k=14k = -\frac{1}{4}. Then 4=A(0)+B(4(14)3)    4=4B    B=14 = A(0) + B(4(-\frac{1}{4}) - 3) \implies 4 = -4B \implies B = -1
So 4(4k3)(4k+1)=14k314k+1\frac{4}{(4k-3)(4k+1)} = \frac{1}{4k-3} - \frac{1}{4k+1}
k=1n(14k314k+1)\sum_{k=1}^{n} (\frac{1}{4k-3} - \frac{1}{4k+1})
This is a telescoping sum. Let's write out the first few terms:
(1115)+(1519)+(19113)+...+(14n314n+1)(\frac{1}{1} - \frac{1}{5}) + (\frac{1}{5} - \frac{1}{9}) + (\frac{1}{9} - \frac{1}{13}) + ... + (\frac{1}{4n-3} - \frac{1}{4n+1})
The terms cancel out, leaving 114n+1=4n+114n+1=4n4n+11 - \frac{1}{4n+1} = \frac{4n+1-1}{4n+1} = \frac{4n}{4n+1}
d) k=1n2k+3k6k\sum_{k=1}^{n} \frac{2^k + 3^k}{6^k}
k=1n(2k6k+3k6k)=k=1n(13k+12k)=k=1n(13)k+k=1n(12)k\sum_{k=1}^{n} (\frac{2^k}{6^k} + \frac{3^k}{6^k}) = \sum_{k=1}^{n} (\frac{1}{3^k} + \frac{1}{2^k}) = \sum_{k=1}^{n} (\frac{1}{3})^k + \sum_{k=1}^{n} (\frac{1}{2})^k
These are geometric series. k=1nrk=r(1rn)1r\sum_{k=1}^{n} r^k = \frac{r(1-r^n)}{1-r}
k=1n(13)k=13(1(13)n)113=13(1(13)n)23=12(1(13)n)\sum_{k=1}^{n} (\frac{1}{3})^k = \frac{\frac{1}{3}(1 - (\frac{1}{3})^n)}{1 - \frac{1}{3}} = \frac{\frac{1}{3}(1 - (\frac{1}{3})^n)}{\frac{2}{3}} = \frac{1}{2}(1 - (\frac{1}{3})^n)
k=1n(12)k=12(1(12)n)112=12(1(12)n)12=1(12)n\sum_{k=1}^{n} (\frac{1}{2})^k = \frac{\frac{1}{2}(1 - (\frac{1}{2})^n)}{1 - \frac{1}{2}} = \frac{\frac{1}{2}(1 - (\frac{1}{2})^n)}{\frac{1}{2}} = 1 - (\frac{1}{2})^n
Therefore, the sum is 12(1(13)n)+1(12)n=3212(13)n(12)n=32123n12n\frac{1}{2}(1 - (\frac{1}{3})^n) + 1 - (\frac{1}{2})^n = \frac{3}{2} - \frac{1}{2}(\frac{1}{3})^n - (\frac{1}{2})^n = \frac{3}{2} - \frac{1}{2 \cdot 3^n} - \frac{1}{2^n}
e) k=1nk+1kk2+k\sum_{k=1}^{n} \frac{\sqrt{k+1} - \sqrt{k}}{\sqrt{k^2 + k}}
k=1nk+1kkk+1=k=1n(k+1kk+1kkk+1)=k=1n(1k1k+1)\sum_{k=1}^{n} \frac{\sqrt{k+1} - \sqrt{k}}{\sqrt{k}\sqrt{k+1}} = \sum_{k=1}^{n} (\frac{\sqrt{k+1}}{\sqrt{k}\sqrt{k+1}} - \frac{\sqrt{k}}{\sqrt{k}\sqrt{k+1}}) = \sum_{k=1}^{n} (\frac{1}{\sqrt{k}} - \frac{1}{\sqrt{k+1}})
This is a telescoping sum.
(1112)+(1213)+...+(1n1n+1)(\frac{1}{\sqrt{1}} - \frac{1}{\sqrt{2}}) + (\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{3}}) + ... + (\frac{1}{\sqrt{n}} - \frac{1}{\sqrt{n+1}})
The intermediate terms cancel out, leaving us with
11n+11 - \frac{1}{\sqrt{n+1}}

3. Final Answer

a) 2n+11\sqrt{2n+1} - 1
b) ln(5151)-\ln(5151)
c) 4n4n+1\frac{4n}{4n+1}
d) 32123n12n\frac{3}{2} - \frac{1}{2 \cdot 3^n} - \frac{1}{2^n}
e) 11n+11 - \frac{1}{\sqrt{n+1}}

Related problems in "Algebra"

Krystyna has some raisins. She gave one fourth of her raisins to Irena. She then eats 6 raisins, aft...

Word ProblemLinear EquationsProblem Solving
2025/6/14

Given that the graph of the function is symmetric with respect to the origin, and $f(2) = 1$, find t...

FunctionsOdd FunctionsSymmetry
2025/6/14

The problem asks to find the value of $a_4$ in a geometric sequence $\{a_n\}$, given that $a_1 = 2$ ...

Sequences and SeriesGeometric SequenceFinding a term
2025/6/14

We are asked to find the inverse function of $y = \sqrt{x-2} + 1$ for $x \ge 2$.

Inverse FunctionsFunctionsSquare RootsDomain and Range
2025/6/14

The problem asks to find the graph of the function $f(x) = 0.5^x$. This is an exponential function o...

Exponential FunctionsGraphingFunction AnalysisExponents
2025/6/14

The problem asks us to find the geometric mean (or the equal ratio middle term) of $\sqrt{2}$ and $\...

Geometric MeanSequences and SeriesRadicals
2025/6/14

Find the values of $c$ and $d$ that satisfy the equation $7 \times 10^c + 7 \times 10^d = 70700$.

ExponentsEquationsSolving EquationsPowers of 10
2025/6/14

We are asked to find the domain of the function $f(x) = \sqrt{x^2 + x - 6}$.

DomainFunctionsQuadratic InequalitiesInequalitiesFactoring
2025/6/14

The problem asks us to identify which of the given functions is the same as the function $y = x$, wh...

FunctionsFunction EqualityReal NumbersAbsolute ValueSquare RootCube Root
2025/6/14

The problem asks us to find an expression for $y$ such that the given condition "jGty = x, where x i...

EquationsFunctionsReal NumbersCube RootAbsolute Value
2025/6/14