a) ∑ i = 1 n ( 2 i + 1 − 2 i − 1 ) \sum_{i=1}^{n} (\sqrt{2i+1} - \sqrt{2i-1}) ∑ i = 1 n ( 2 i + 1 − 2 i − 1 ) This is a telescoping sum. We can write out the first few terms:
( 3 − 1 ) + ( 5 − 3 ) + ( 7 − 5 ) + . . . + ( 2 n + 1 − 2 n − 1 ) (\sqrt{3}-\sqrt{1}) + (\sqrt{5}-\sqrt{3}) + (\sqrt{7}-\sqrt{5}) + ... + (\sqrt{2n+1} - \sqrt{2n-1}) ( 3 − 1 ) + ( 5 − 3 ) + ( 7 − 5 ) + ... + ( 2 n + 1 − 2 n − 1 ) The intermediate terms cancel out, leaving us with
2 n + 1 − 1 = 2 n + 1 − 1 \sqrt{2n+1} - \sqrt{1} = \sqrt{2n+1} - 1 2 n + 1 − 1 = 2 n + 1 − 1
b) ∑ k = 1 100 ln ( k k + 2 ) \sum_{k=1}^{100} \ln(\frac{k}{k+2}) ∑ k = 1 100 ln ( k + 2 k ) Using properties of logarithms, we can write this as
∑ k = 1 100 ( ln ( k ) − ln ( k + 2 ) ) \sum_{k=1}^{100} (\ln(k) - \ln(k+2)) ∑ k = 1 100 ( ln ( k ) − ln ( k + 2 )) This is also a telescoping sum. Writing out the first few terms:
( ln ( 1 ) − ln ( 3 ) ) + ( ln ( 2 ) − ln ( 4 ) ) + ( ln ( 3 ) − ln ( 5 ) ) + ( ln ( 4 ) − ln ( 6 ) ) + . . . + ( ln ( 99 ) − ln ( 101 ) ) + ( ln ( 100 ) − ln ( 102 ) ) (\ln(1) - \ln(3)) + (\ln(2) - \ln(4)) + (\ln(3) - \ln(5)) + (\ln(4) - \ln(6)) + ... + (\ln(99) - \ln(101)) + (\ln(100) - \ln(102)) ( ln ( 1 ) − ln ( 3 )) + ( ln ( 2 ) − ln ( 4 )) + ( ln ( 3 ) − ln ( 5 )) + ( ln ( 4 ) − ln ( 6 )) + ... + ( ln ( 99 ) − ln ( 101 )) + ( ln ( 100 ) − ln ( 102 )) We have ln ( 1 ) + ln ( 2 ) − ln ( 101 ) − ln ( 102 ) = ln ( 1 ) + ln ( 2 ) − ln ( 101 ) − ln ( 102 ) = ln ( 1 ) + ln ( 2 ) − ln ( 101 ⋅ 102 ) = ln ( 2 10302 ) = ln ( 1 5151 ) \ln(1) + \ln(2) - \ln(101) - \ln(102) = \ln(1) + \ln(2) - \ln(101) - \ln(102) = \ln(1) + \ln(2) - \ln(101 \cdot 102) = \ln(\frac{2}{10302}) = \ln(\frac{1}{5151}) ln ( 1 ) + ln ( 2 ) − ln ( 101 ) − ln ( 102 ) = ln ( 1 ) + ln ( 2 ) − ln ( 101 ) − ln ( 102 ) = ln ( 1 ) + ln ( 2 ) − ln ( 101 ⋅ 102 ) = ln ( 10302 2 ) = ln ( 5151 1 ) Therefore the sum is ln ( 1 ) + ln ( 2 ) − ln ( 101 ) − ln ( 102 ) = ln ( 1 ∗ 2 ) − ln ( 101 ∗ 102 ) = ln ( 2 ) − ln ( 10302 ) = ln ( 2 10302 ) = ln ( 1 5151 ) = − ln ( 5151 ) \ln(1) + \ln(2) - \ln(101) - \ln(102) = \ln(1*2) - \ln(101*102) = \ln(2) - \ln(10302) = \ln(\frac{2}{10302}) = \ln(\frac{1}{5151}) = -\ln(5151) ln ( 1 ) + ln ( 2 ) − ln ( 101 ) − ln ( 102 ) = ln ( 1 ∗ 2 ) − ln ( 101 ∗ 102 ) = ln ( 2 ) − ln ( 10302 ) = ln ( 10302 2 ) = ln ( 5151 1 ) = − ln ( 5151 )
c) ∑ k = 1 n 4 ( 4 k − 3 ) ( 4 k + 1 ) \sum_{k=1}^{n} \frac{4}{(4k-3)(4k+1)} ∑ k = 1 n ( 4 k − 3 ) ( 4 k + 1 ) 4 We can decompose the fraction using partial fractions:
4 ( 4 k − 3 ) ( 4 k + 1 ) = A 4 k − 3 + B 4 k + 1 \frac{4}{(4k-3)(4k+1)} = \frac{A}{4k-3} + \frac{B}{4k+1} ( 4 k − 3 ) ( 4 k + 1 ) 4 = 4 k − 3 A + 4 k + 1 B 4 = A ( 4 k + 1 ) + B ( 4 k − 3 ) 4 = A(4k+1) + B(4k-3) 4 = A ( 4 k + 1 ) + B ( 4 k − 3 ) Let k = 3 4 k = \frac{3}{4} k = 4 3 . Then 4 = A ( 4 ( 3 4 ) + 1 ) + B ( 0 ) ⟹ 4 = 4 A ⟹ A = 1 4 = A(4(\frac{3}{4}) + 1) + B(0) \implies 4 = 4A \implies A=1 4 = A ( 4 ( 4 3 ) + 1 ) + B ( 0 ) ⟹ 4 = 4 A ⟹ A = 1 Let k = − 1 4 k = -\frac{1}{4} k = − 4 1 . Then 4 = A ( 0 ) + B ( 4 ( − 1 4 ) − 3 ) ⟹ 4 = − 4 B ⟹ B = − 1 4 = A(0) + B(4(-\frac{1}{4}) - 3) \implies 4 = -4B \implies B = -1 4 = A ( 0 ) + B ( 4 ( − 4 1 ) − 3 ) ⟹ 4 = − 4 B ⟹ B = − 1 So 4 ( 4 k − 3 ) ( 4 k + 1 ) = 1 4 k − 3 − 1 4 k + 1 \frac{4}{(4k-3)(4k+1)} = \frac{1}{4k-3} - \frac{1}{4k+1} ( 4 k − 3 ) ( 4 k + 1 ) 4 = 4 k − 3 1 − 4 k + 1 1 ∑ k = 1 n ( 1 4 k − 3 − 1 4 k + 1 ) \sum_{k=1}^{n} (\frac{1}{4k-3} - \frac{1}{4k+1}) ∑ k = 1 n ( 4 k − 3 1 − 4 k + 1 1 ) This is a telescoping sum. Let's write out the first few terms:
( 1 1 − 1 5 ) + ( 1 5 − 1 9 ) + ( 1 9 − 1 13 ) + . . . + ( 1 4 n − 3 − 1 4 n + 1 ) (\frac{1}{1} - \frac{1}{5}) + (\frac{1}{5} - \frac{1}{9}) + (\frac{1}{9} - \frac{1}{13}) + ... + (\frac{1}{4n-3} - \frac{1}{4n+1}) ( 1 1 − 5 1 ) + ( 5 1 − 9 1 ) + ( 9 1 − 13 1 ) + ... + ( 4 n − 3 1 − 4 n + 1 1 ) The terms cancel out, leaving 1 − 1 4 n + 1 = 4 n + 1 − 1 4 n + 1 = 4 n 4 n + 1 1 - \frac{1}{4n+1} = \frac{4n+1-1}{4n+1} = \frac{4n}{4n+1} 1 − 4 n + 1 1 = 4 n + 1 4 n + 1 − 1 = 4 n + 1 4 n
d) ∑ k = 1 n 2 k + 3 k 6 k \sum_{k=1}^{n} \frac{2^k + 3^k}{6^k} ∑ k = 1 n 6 k 2 k + 3 k ∑ k = 1 n ( 2 k 6 k + 3 k 6 k ) = ∑ k = 1 n ( 1 3 k + 1 2 k ) = ∑ k = 1 n ( 1 3 ) k + ∑ k = 1 n ( 1 2 ) k \sum_{k=1}^{n} (\frac{2^k}{6^k} + \frac{3^k}{6^k}) = \sum_{k=1}^{n} (\frac{1}{3^k} + \frac{1}{2^k}) = \sum_{k=1}^{n} (\frac{1}{3})^k + \sum_{k=1}^{n} (\frac{1}{2})^k ∑ k = 1 n ( 6 k 2 k + 6 k 3 k ) = ∑ k = 1 n ( 3 k 1 + 2 k 1 ) = ∑ k = 1 n ( 3 1 ) k + ∑ k = 1 n ( 2 1 ) k These are geometric series. ∑ k = 1 n r k = r ( 1 − r n ) 1 − r \sum_{k=1}^{n} r^k = \frac{r(1-r^n)}{1-r} ∑ k = 1 n r k = 1 − r r ( 1 − r n ) ∑ k = 1 n ( 1 3 ) k = 1 3 ( 1 − ( 1 3 ) n ) 1 − 1 3 = 1 3 ( 1 − ( 1 3 ) n ) 2 3 = 1 2 ( 1 − ( 1 3 ) n ) \sum_{k=1}^{n} (\frac{1}{3})^k = \frac{\frac{1}{3}(1 - (\frac{1}{3})^n)}{1 - \frac{1}{3}} = \frac{\frac{1}{3}(1 - (\frac{1}{3})^n)}{\frac{2}{3}} = \frac{1}{2}(1 - (\frac{1}{3})^n) ∑ k = 1 n ( 3 1 ) k = 1 − 3 1 3 1 ( 1 − ( 3 1 ) n ) = 3 2 3 1 ( 1 − ( 3 1 ) n ) = 2 1 ( 1 − ( 3 1 ) n ) ∑ k = 1 n ( 1 2 ) k = 1 2 ( 1 − ( 1 2 ) n ) 1 − 1 2 = 1 2 ( 1 − ( 1 2 ) n ) 1 2 = 1 − ( 1 2 ) n \sum_{k=1}^{n} (\frac{1}{2})^k = \frac{\frac{1}{2}(1 - (\frac{1}{2})^n)}{1 - \frac{1}{2}} = \frac{\frac{1}{2}(1 - (\frac{1}{2})^n)}{\frac{1}{2}} = 1 - (\frac{1}{2})^n ∑ k = 1 n ( 2 1 ) k = 1 − 2 1 2 1 ( 1 − ( 2 1 ) n ) = 2 1 2 1 ( 1 − ( 2 1 ) n ) = 1 − ( 2 1 ) n Therefore, the sum is 1 2 ( 1 − ( 1 3 ) n ) + 1 − ( 1 2 ) n = 3 2 − 1 2 ( 1 3 ) n − ( 1 2 ) n = 3 2 − 1 2 ⋅ 3 n − 1 2 n \frac{1}{2}(1 - (\frac{1}{3})^n) + 1 - (\frac{1}{2})^n = \frac{3}{2} - \frac{1}{2}(\frac{1}{3})^n - (\frac{1}{2})^n = \frac{3}{2} - \frac{1}{2 \cdot 3^n} - \frac{1}{2^n} 2 1 ( 1 − ( 3 1 ) n ) + 1 − ( 2 1 ) n = 2 3 − 2 1 ( 3 1 ) n − ( 2 1 ) n = 2 3 − 2 ⋅ 3 n 1 − 2 n 1
e) ∑ k = 1 n k + 1 − k k 2 + k \sum_{k=1}^{n} \frac{\sqrt{k+1} - \sqrt{k}}{\sqrt{k^2 + k}} ∑ k = 1 n k 2 + k k + 1 − k ∑ k = 1 n k + 1 − k k k + 1 = ∑ k = 1 n ( k + 1 k k + 1 − k k k + 1 ) = ∑ k = 1 n ( 1 k − 1 k + 1 ) \sum_{k=1}^{n} \frac{\sqrt{k+1} - \sqrt{k}}{\sqrt{k}\sqrt{k+1}} = \sum_{k=1}^{n} (\frac{\sqrt{k+1}}{\sqrt{k}\sqrt{k+1}} - \frac{\sqrt{k}}{\sqrt{k}\sqrt{k+1}}) = \sum_{k=1}^{n} (\frac{1}{\sqrt{k}} - \frac{1}{\sqrt{k+1}}) ∑ k = 1 n k k + 1 k + 1 − k = ∑ k = 1 n ( k k + 1 k + 1 − k k + 1 k ) = ∑ k = 1 n ( k 1 − k + 1 1 ) This is a telescoping sum.
( 1 1 − 1 2 ) + ( 1 2 − 1 3 ) + . . . + ( 1 n − 1 n + 1 ) (\frac{1}{\sqrt{1}} - \frac{1}{\sqrt{2}}) + (\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{3}}) + ... + (\frac{1}{\sqrt{n}} - \frac{1}{\sqrt{n+1}}) ( 1 1 − 2 1 ) + ( 2 1 − 3 1 ) + ... + ( n 1 − n + 1 1 ) The intermediate terms cancel out, leaving us with
1 − 1 n + 1 1 - \frac{1}{\sqrt{n+1}} 1 − n + 1 1