The problem defines a sequence $f$ such that for all $n \in \mathbb{N}$, $2f(n+1) + f(n) = 0$, and $f(0) \neq 0$. 1. Prove that for any integer $k \ge 2$, $f(0)f(k) = f(2)f(k-2)$.

AnalysisSequences and SeriesGeometric SequencesConvergenceLimits
2025/5/24

1. Problem Description

The problem defines a sequence ff such that for all nNn \in \mathbb{N}, 2f(n+1)+f(n)=02f(n+1) + f(n) = 0, and f(0)0f(0) \neq 0.

1. Prove that for any integer $k \ge 2$, $f(0)f(k) = f(2)f(k-2)$.

2. a) Calculate $f(n)$ as a function of $f(0)$. Deduce $f(n)$ as a function of $n$ knowing that $f(0) = 1$.

b) Calculate in this case the sum Sn=f(0)+f(1)+f(2)++f(n)S_n = f(0) + f(1) + f(2) + \dots + f(n).

3. Study the convergence of $(S_n)$.

2. Solution Steps

1. We want to prove that for any integer $k \ge 2$, $f(0)f(k) = f(2)f(k-2)$.

From the definition of the sequence, we have 2f(n+1)+f(n)=02f(n+1) + f(n) = 0, which implies f(n+1)=12f(n)f(n+1) = -\frac{1}{2} f(n).
This means that ff is a geometric sequence with ratio 12-\frac{1}{2}. Therefore, f(n)=f(0)(12)nf(n) = f(0) \left(-\frac{1}{2}\right)^n for all nNn \in \mathbb{N}.
Now, let's consider f(0)f(k)f(0)f(k) and f(2)f(k2)f(2)f(k-2):
f(0)f(k)=f(0)f(0)(12)k=f(0)2(12)kf(0)f(k) = f(0) \cdot f(0) \left(-\frac{1}{2}\right)^k = f(0)^2 \left(-\frac{1}{2}\right)^k.
f(2)f(k2)=f(0)(12)2f(0)(12)k2=f(0)2(12)2(12)k2=f(0)2(12)2+k2=f(0)2(12)kf(2)f(k-2) = f(0) \left(-\frac{1}{2}\right)^2 \cdot f(0) \left(-\frac{1}{2}\right)^{k-2} = f(0)^2 \left(-\frac{1}{2}\right)^2 \left(-\frac{1}{2}\right)^{k-2} = f(0)^2 \left(-\frac{1}{2}\right)^{2+k-2} = f(0)^2 \left(-\frac{1}{2}\right)^k.
Since f(0)f(k)=f(0)2(12)k=f(2)f(k2)f(0)f(k) = f(0)^2 \left(-\frac{1}{2}\right)^k = f(2)f(k-2), the statement is proven.

2. a) Calculate $f(n)$ as a function of $f(0)$.

As we have seen earlier, f(n)=f(0)(12)nf(n) = f(0) \left(-\frac{1}{2}\right)^n.
Now, we deduce f(n)f(n) as a function of nn knowing that f(0)=1f(0) = 1.
So, f(n)=1(12)n=(12)nf(n) = 1 \cdot \left(-\frac{1}{2}\right)^n = \left(-\frac{1}{2}\right)^n.
b) Calculate in this case the sum Sn=f(0)+f(1)+f(2)++f(n)S_n = f(0) + f(1) + f(2) + \dots + f(n).
Sn=i=0nf(i)=i=0n(12)iS_n = \sum_{i=0}^{n} f(i) = \sum_{i=0}^{n} \left(-\frac{1}{2}\right)^i.
This is a geometric series with first term a=1a = 1 and ratio r=12r = -\frac{1}{2}.
The sum of the first n+1n+1 terms is given by the formula:
Sn=a(1rn+1)1r=1(1(12)n+1)1(12)=1(12)n+11+12=1(12)n+132=23(1(12)n+1)S_n = \frac{a(1-r^{n+1})}{1-r} = \frac{1(1 - (-\frac{1}{2})^{n+1})}{1 - (-\frac{1}{2})} = \frac{1 - (-\frac{1}{2})^{n+1}}{1 + \frac{1}{2}} = \frac{1 - (-\frac{1}{2})^{n+1}}{\frac{3}{2}} = \frac{2}{3}\left(1 - \left(-\frac{1}{2}\right)^{n+1}\right).

3. Study the convergence of $(S_n)$.

We need to find the limit of SnS_n as nn approaches infinity:
limnSn=limn23(1(12)n+1)\lim_{n \to \infty} S_n = \lim_{n \to \infty} \frac{2}{3}\left(1 - \left(-\frac{1}{2}\right)^{n+1}\right).
Since limn(12)n+1=0\lim_{n \to \infty} \left(-\frac{1}{2}\right)^{n+1} = 0, we have:
limnSn=23(10)=23\lim_{n \to \infty} S_n = \frac{2}{3}(1 - 0) = \frac{2}{3}.
Therefore, the sequence (Sn)(S_n) converges to 23\frac{2}{3}.

3. Final Answer

1. Proven that for any integer $k \ge 2$, $f(0)f(k) = f(2)f(k-2)$.

2. a) $f(n) = f(0)(-\frac{1}{2})^n$. If $f(0) = 1$, then $f(n) = (-\frac{1}{2})^n$.

b) Sn=23(1(12)n+1)S_n = \frac{2}{3}(1 - (-\frac{1}{2})^{n+1}).

3. The sequence $(S_n)$ converges to $\frac{2}{3}$.

Related problems in "Analysis"

We need to find the mass $m$ and center of mass $(\bar{x}, \bar{y})$ of the lamina bounded by the cu...

CalculusDouble IntegralsCenter of MassIntegration by PartsLamina
2025/5/25

The problem asks us to find the mass $m$ and the center of mass $(\bar{x}, \bar{y})$ of the lamina b...

Multiple IntegralsCenter of MassDouble IntegralsDensity FunctionLamina
2025/5/25

The problem asks to find the mass $m$ and the center of mass $(\bar{x}, \bar{y})$ of a lamina bounde...

Multivariable CalculusDouble IntegralsCenter of MassLaminaDensity Function
2025/5/25

The problem asks us to find the value(s) of $a$ such that the function $f(x) = x^3 + ax^2 + 3x - 4$ ...

CalculusDerivativesIncreasing FunctionQuadratic InequalitiesDiscriminant
2025/5/25

The problem is to evaluate the double integral $\int_0^{\pi/2} [\frac{1}{2} \int_4^0 \sqrt{u} \, du ...

CalculusIntegrationDouble IntegralDefinite Integral
2025/5/25

We need to evaluate the double integral $\iint_S y \, dA$, where $S$ is the region in the first quad...

Double IntegralsPolar CoordinatesMultivariable Calculus
2025/5/25

We need to evaluate the double integral $\iint_S \sqrt{4-x^2-y^2} \, dA$, where $S$ is the first qua...

Multiple IntegralsDouble IntegralsPolar CoordinatesIntegrationCalculus
2025/5/25

The problem asks to reverse the order of integration of the iterated integral $\int_0^1 \int_{-y}^y ...

Iterated IntegralsChange of Order of IntegrationCalculus of Several Variables
2025/5/25

We are given the iterated integral $\int_{0}^{1} \int_{x^2}^{x^{1/4}} f(x, y) dy dx$. We need to cha...

Iterated IntegralsChange of Integration OrderCalculus
2025/5/25

We are given the iterated integral $\int_{-\pi/2}^{\pi/2} \int_{0}^{\theta} kr dr d\theta$. The goal...

Iterated IntegralsDouble IntegralsCenter of MassPolar CoordinatesCalculus
2025/5/25