The problem defines a sequence $f$ such that for all $n \in \mathbb{N}$, $2f(n+1) + f(n) = 0$, and $f(0) \neq 0$. 1. Prove that for any integer $k \ge 2$, $f(0)f(k) = f(2)f(k-2)$.

AnalysisSequences and SeriesGeometric SequencesConvergenceLimits
2025/5/24

1. Problem Description

The problem defines a sequence ff such that for all nNn \in \mathbb{N}, 2f(n+1)+f(n)=02f(n+1) + f(n) = 0, and f(0)0f(0) \neq 0.

1. Prove that for any integer $k \ge 2$, $f(0)f(k) = f(2)f(k-2)$.

2. a) Calculate $f(n)$ as a function of $f(0)$. Deduce $f(n)$ as a function of $n$ knowing that $f(0) = 1$.

b) Calculate in this case the sum Sn=f(0)+f(1)+f(2)++f(n)S_n = f(0) + f(1) + f(2) + \dots + f(n).

3. Study the convergence of $(S_n)$.

2. Solution Steps

1. We want to prove that for any integer $k \ge 2$, $f(0)f(k) = f(2)f(k-2)$.

From the definition of the sequence, we have 2f(n+1)+f(n)=02f(n+1) + f(n) = 0, which implies f(n+1)=12f(n)f(n+1) = -\frac{1}{2} f(n).
This means that ff is a geometric sequence with ratio 12-\frac{1}{2}. Therefore, f(n)=f(0)(12)nf(n) = f(0) \left(-\frac{1}{2}\right)^n for all nNn \in \mathbb{N}.
Now, let's consider f(0)f(k)f(0)f(k) and f(2)f(k2)f(2)f(k-2):
f(0)f(k)=f(0)f(0)(12)k=f(0)2(12)kf(0)f(k) = f(0) \cdot f(0) \left(-\frac{1}{2}\right)^k = f(0)^2 \left(-\frac{1}{2}\right)^k.
f(2)f(k2)=f(0)(12)2f(0)(12)k2=f(0)2(12)2(12)k2=f(0)2(12)2+k2=f(0)2(12)kf(2)f(k-2) = f(0) \left(-\frac{1}{2}\right)^2 \cdot f(0) \left(-\frac{1}{2}\right)^{k-2} = f(0)^2 \left(-\frac{1}{2}\right)^2 \left(-\frac{1}{2}\right)^{k-2} = f(0)^2 \left(-\frac{1}{2}\right)^{2+k-2} = f(0)^2 \left(-\frac{1}{2}\right)^k.
Since f(0)f(k)=f(0)2(12)k=f(2)f(k2)f(0)f(k) = f(0)^2 \left(-\frac{1}{2}\right)^k = f(2)f(k-2), the statement is proven.

2. a) Calculate $f(n)$ as a function of $f(0)$.

As we have seen earlier, f(n)=f(0)(12)nf(n) = f(0) \left(-\frac{1}{2}\right)^n.
Now, we deduce f(n)f(n) as a function of nn knowing that f(0)=1f(0) = 1.
So, f(n)=1(12)n=(12)nf(n) = 1 \cdot \left(-\frac{1}{2}\right)^n = \left(-\frac{1}{2}\right)^n.
b) Calculate in this case the sum Sn=f(0)+f(1)+f(2)++f(n)S_n = f(0) + f(1) + f(2) + \dots + f(n).
Sn=i=0nf(i)=i=0n(12)iS_n = \sum_{i=0}^{n} f(i) = \sum_{i=0}^{n} \left(-\frac{1}{2}\right)^i.
This is a geometric series with first term a=1a = 1 and ratio r=12r = -\frac{1}{2}.
The sum of the first n+1n+1 terms is given by the formula:
Sn=a(1rn+1)1r=1(1(12)n+1)1(12)=1(12)n+11+12=1(12)n+132=23(1(12)n+1)S_n = \frac{a(1-r^{n+1})}{1-r} = \frac{1(1 - (-\frac{1}{2})^{n+1})}{1 - (-\frac{1}{2})} = \frac{1 - (-\frac{1}{2})^{n+1}}{1 + \frac{1}{2}} = \frac{1 - (-\frac{1}{2})^{n+1}}{\frac{3}{2}} = \frac{2}{3}\left(1 - \left(-\frac{1}{2}\right)^{n+1}\right).

3. Study the convergence of $(S_n)$.

We need to find the limit of SnS_n as nn approaches infinity:
limnSn=limn23(1(12)n+1)\lim_{n \to \infty} S_n = \lim_{n \to \infty} \frac{2}{3}\left(1 - \left(-\frac{1}{2}\right)^{n+1}\right).
Since limn(12)n+1=0\lim_{n \to \infty} \left(-\frac{1}{2}\right)^{n+1} = 0, we have:
limnSn=23(10)=23\lim_{n \to \infty} S_n = \frac{2}{3}(1 - 0) = \frac{2}{3}.
Therefore, the sequence (Sn)(S_n) converges to 23\frac{2}{3}.

3. Final Answer

1. Proven that for any integer $k \ge 2$, $f(0)f(k) = f(2)f(k-2)$.

2. a) $f(n) = f(0)(-\frac{1}{2})^n$. If $f(0) = 1$, then $f(n) = (-\frac{1}{2})^n$.

b) Sn=23(1(12)n+1)S_n = \frac{2}{3}(1 - (-\frac{1}{2})^{n+1}).

3. The sequence $(S_n)$ converges to $\frac{2}{3}$.

Related problems in "Analysis"

We are asked to find the horizontal asymptote of the function $f(x) = \frac{1-6x^2-x}{2x^2-x+2}$.

LimitsAsymptotesRational FunctionsCalculus
2025/6/24

The problem asks to analyze the given function $f(x) = \frac{2}{3}x^3 - x^2 - \frac{2}{3}$.

CalculusDerivativesCritical PointsLocal MaximaLocal MinimaFunctions
2025/6/24

The problem asks for the derivative of the function $f(x) = x^2 \ln x$. We need to find $f'(x)$.

DifferentiationProduct RuleLogarithmic Functions
2025/6/22

We need to find the interval of continuity for the function $f(x) = \frac{1}{\sqrt{x+10}}$.

ContinuityFunctionsIntervalsSquare Roots
2025/6/22

We are given the function $f(x) = \frac{x^3}{(x+1)^2}$. The problem asks us to find the domain, inte...

CalculusDerivativesDomainInterceptsCritical PointsInflection PointsAsymptotesCurve Sketching
2025/6/21

The problem consists of multiple limit calculations. (a) $\lim_{h\to 0} \frac{(2+h)^3 - 8}{h}$ (b) $...

LimitsCalculusLimits at InfinityGreatest Integer FunctionTrigonometric Functions
2025/6/21

We are given a function $f(x) = \frac{x+1}{\lfloor 3x-2 \rfloor}$, where $\lfloor x \rfloor$ represe...

DomainContinuityFloor FunctionLimits
2025/6/21

We are given the function $f(x) = 2x - 1 + \ln(\frac{x}{x+1})$. The problem asks us to find the doma...

Function AnalysisDomainLimitsAsymptotesDerivativesMonotonicityExtreme ValuesTable of VariationsOblique AsymptoteRoot FindingApproximation
2025/6/21

The problem consists of three parts: a) Evaluate the limit $\lim_{x\to 2} \frac{|x-2| + x - 2}{x^2 -...

LimitsHyperbolic FunctionsInverse Hyperbolic Functions
2025/6/19

The problem consists of four independent questions: d) Newton's Law of Cooling: The temperature of a...

Differential EquationsNewton's Law of CoolingFunction AnalysisDefinite IntegralFundamental Theorem of CalculusCalculus
2025/6/19