The problem consists of multiple limit calculations. (a) $\lim_{h\to 0} \frac{(2+h)^3 - 8}{h}$ (b) $\lim_{x\to -\infty} \frac{\sqrt{1+4x^6}}{2-x^3}$ (c) $\lim_{x\to 1} \arcsin(\frac{1-\sqrt{x}}{1-x})$ (d) $\lim_{x\to 4^+} \frac{4-x}{|4-x|}$ (e) $\lim_{x\to -\frac{5}{2}} [x]$

AnalysisLimitsCalculusLimits at InfinityGreatest Integer FunctionTrigonometric Functions
2025/6/21

1. Problem Description

The problem consists of multiple limit calculations.
(a) limh0(2+h)38h\lim_{h\to 0} \frac{(2+h)^3 - 8}{h}
(b) limx1+4x62x3\lim_{x\to -\infty} \frac{\sqrt{1+4x^6}}{2-x^3}
(c) limx1arcsin(1x1x)\lim_{x\to 1} \arcsin(\frac{1-\sqrt{x}}{1-x})
(d) limx4+4x4x\lim_{x\to 4^+} \frac{4-x}{|4-x|}
(e) limx52[x]\lim_{x\to -\frac{5}{2}} [x]

2. Solution Steps

(a) limh0(2+h)38h\lim_{h\to 0} \frac{(2+h)^3 - 8}{h}
Expand (2+h)3(2+h)^3:
(2+h)3=23+3(22)h+3(2)h2+h3=8+12h+6h2+h3(2+h)^3 = 2^3 + 3(2^2)h + 3(2)h^2 + h^3 = 8 + 12h + 6h^2 + h^3
So,
(2+h)38=12h+6h2+h3=h(12+6h+h2)(2+h)^3 - 8 = 12h + 6h^2 + h^3 = h(12 + 6h + h^2)
Then,
limh0h(12+6h+h2)h=limh0(12+6h+h2)=12+6(0)+(0)2=12\lim_{h\to 0} \frac{h(12 + 6h + h^2)}{h} = \lim_{h\to 0} (12 + 6h + h^2) = 12 + 6(0) + (0)^2 = 12
(b) limx1+4x62x3\lim_{x\to -\infty} \frac{\sqrt{1+4x^6}}{2-x^3}
Divide both the numerator and the denominator by x3x^3. Since xx \to -\infty, we have x6=x3=x3\sqrt{x^6} = |x^3| = -x^3.
limx1+4x62x3=limx1+4x6x32x3x3=limx1x6+42x3+1\lim_{x\to -\infty} \frac{\sqrt{1+4x^6}}{2-x^3} = \lim_{x\to -\infty} \frac{\frac{\sqrt{1+4x^6}}{-x^3}}{\frac{2-x^3}{-x^3}} = \lim_{x\to -\infty} \frac{-\sqrt{\frac{1}{x^6}+4}}{\frac{2}{-x^3}+1}
As xx \to -\infty, 1x60\frac{1}{x^6} \to 0 and 2x30\frac{2}{-x^3} \to 0.
So, limx1x6+42x3+1=0+40+1=21=2\lim_{x\to -\infty} \frac{-\sqrt{\frac{1}{x^6}+4}}{\frac{2}{-x^3}+1} = \frac{-\sqrt{0+4}}{0+1} = \frac{-2}{1} = -2
(c) limx1arcsin(1x1x)\lim_{x\to 1} \arcsin(\frac{1-\sqrt{x}}{1-x})
We can rewrite 1x1x\frac{1-\sqrt{x}}{1-x} as follows:
1x1x=1x(1x)(1+x)=11+x\frac{1-\sqrt{x}}{1-x} = \frac{1-\sqrt{x}}{(1-\sqrt{x})(1+\sqrt{x})} = \frac{1}{1+\sqrt{x}}
Then,
limx1arcsin(1x1x)=limx1arcsin(11+x)\lim_{x\to 1} \arcsin(\frac{1-\sqrt{x}}{1-x}) = \lim_{x\to 1} \arcsin(\frac{1}{1+\sqrt{x}})
As x1x\to 1, 11+x11+1=12\frac{1}{1+\sqrt{x}} \to \frac{1}{1+\sqrt{1}} = \frac{1}{2}.
limx1arcsin(11+x)=arcsin(12)=π6\lim_{x\to 1} \arcsin(\frac{1}{1+\sqrt{x}}) = \arcsin(\frac{1}{2}) = \frac{\pi}{6}
(d) limx4+4x4x\lim_{x\to 4^+} \frac{4-x}{|4-x|}
As x4+x\to 4^+, x>4x > 4, so 4x<04-x < 0. Then, 4x=(4x)=x4|4-x| = -(4-x) = x-4.
So, 4x4x=4xx4=1\frac{4-x}{|4-x|} = \frac{4-x}{x-4} = -1.
limx4+4x4x=limx4+(1)=1\lim_{x\to 4^+} \frac{4-x}{|4-x|} = \lim_{x\to 4^+} (-1) = -1
(e) limx52[x]\lim_{x\to -\frac{5}{2}} [x]
Here, [x][x] represents the greatest integer less than or equal to xx.
52=2.5-\frac{5}{2} = -2.5
Since we are taking the limit as xx approaches 52-\frac{5}{2}, we consider values of xx close to 2.5-2.5.
As x2.5x \to -2.5, [x]=3[x] = -3.
limx52[x]=3\lim_{x\to -\frac{5}{2}} [x] = -3

3. Final Answer

(a) 12
(b) -2
(c) π6\frac{\pi}{6}
(d) -1
(e) -3

Related problems in "Analysis"

We are given the function $f(x) = \frac{x^3}{(x+1)^2}$. The problem asks us to find the domain, inte...

CalculusDerivativesDomainInterceptsCritical PointsInflection PointsAsymptotesCurve Sketching
2025/6/21

We are given a function $f(x) = \frac{x+1}{\lfloor 3x-2 \rfloor}$, where $\lfloor x \rfloor$ represe...

DomainContinuityFloor FunctionLimits
2025/6/21

We are given the function $f(x) = 2x - 1 + \ln(\frac{x}{x+1})$. The problem asks us to find the doma...

Function AnalysisDomainLimitsAsymptotesDerivativesMonotonicityExtreme ValuesTable of VariationsOblique AsymptoteRoot FindingApproximation
2025/6/21

The problem consists of three parts: a) Evaluate the limit $\lim_{x\to 2} \frac{|x-2| + x - 2}{x^2 -...

LimitsHyperbolic FunctionsInverse Hyperbolic Functions
2025/6/19

The problem consists of four independent questions: d) Newton's Law of Cooling: The temperature of a...

Differential EquationsNewton's Law of CoolingFunction AnalysisDefinite IntegralFundamental Theorem of CalculusCalculus
2025/6/19

We are given the function $f(x) = \ln(x^2 + x)$. We need to find the domain of $f$, the x-intercepts...

CalculusLimitsDerivativesDomainAsymptotesConcavityGraphingLogarithmic Differentiation
2025/6/19

The problem consists of defining concepts related to functions, determining the truth of statements ...

LimitsContinuityDifferentiabilityEpsilon-Delta DefinitionPiecewise FunctionsCritical NumbersLocal Minima
2025/6/19

The problem involves analyzing the function $f(x) = 2x - 1 + \ln(\frac{x}{x+1})$. It asks to find th...

Function AnalysisDomainLimitsAsymptotesDerivativesMonotonicityCurve SketchingEquation SolvingNumerical Approximation
2025/6/15

The problem asks us to draw the graph of the function $y = \sin^{-1}(-\sin x)$.

TrigonometryInverse Trigonometric FunctionsGraphingPeriodic Functions
2025/6/14

We are asked to determine whether the function $y = \sqrt{4-x^2} - 2x^2$ is an even function, an odd...

Function AnalysisEven and Odd FunctionsDomain of a FunctionSquare Root Function
2025/6/14