We are given the function $f(x) = \ln(x^2 + x)$. We need to find the domain of $f$, the x-intercepts, the limit of $f(x)$ as $x$ approaches an accumulation point of the domain that is not in the domain, the limit of $f(x)$ as $x$ approaches $\pm \infty$, the first and second derivatives, the intervals of increase and decrease, the concavity, and sketch a graph. Then we have two limit problems. Then we have a problem using logarithmic differentiation and a final word problem.

AnalysisCalculusLimitsDerivativesDomainAsymptotesConcavityGraphingLogarithmic Differentiation
2025/6/19

1. Problem Description

We are given the function f(x)=ln(x2+x)f(x) = \ln(x^2 + x). We need to find the domain of ff, the x-intercepts, the limit of f(x)f(x) as xx approaches an accumulation point of the domain that is not in the domain, the limit of f(x)f(x) as xx approaches ±\pm \infty, the first and second derivatives, the intervals of increase and decrease, the concavity, and sketch a graph. Then we have two limit problems. Then we have a problem using logarithmic differentiation and a final word problem.

2. Solution Steps

Question B2:

1. Domain of $f$: The domain of the natural logarithm function $\ln(u)$ is $u > 0$. Therefore, we need $x^2 + x > 0$, which means $x(x+1) > 0$. This inequality holds when $x < -1$ or $x > 0$. So the domain is $(-\infty, -1) \cup (0, \infty)$.

2. x-intercepts: We need to solve $f(x) = 0$, which means $\ln(x^2 + x) = 0$. Then $x^2 + x = e^0 = 1$, so $x^2 + x - 1 = 0$. Using the quadratic formula, $x = \frac{-1 \pm \sqrt{1^2 - 4(1)(-1)}}{2(1)} = \frac{-1 \pm \sqrt{5}}{2}$. Since $\frac{-1 - \sqrt{5}}{2} \approx \frac{-1 - 2.236}{2} \approx -1.618 < -1$ and $\frac{-1 + \sqrt{5}}{2} \approx \frac{-1 + 2.236}{2} \approx 0.618 > 0$, both roots are in the domain.

3. Limits and asymptotes: The boundary points of the domain are $x = -1$ and $x = 0$.

As x1x \to -1^-, x2+x0+x^2 + x \to 0^+, so limx1ln(x2+x)=\lim_{x \to -1^-} \ln(x^2 + x) = -\infty. Therefore, x=1x = -1 is a vertical asymptote.
As x0+x \to 0^+, x2+x0+x^2 + x \to 0^+, so limx0+ln(x2+x)=\lim_{x \to 0^+} \ln(x^2 + x) = -\infty. Therefore, x=0x = 0 is a vertical asymptote.

4. Limits as $x \to \pm \infty$: As $x \to \pm \infty$, $x^2 + x \to \infty$, so $\lim_{x \to \pm \infty} \ln(x^2 + x) = \infty$.

5. Derivatives:

a) f(x)=1x2+x(2x+1)=2x+1x2+xf'(x) = \frac{1}{x^2 + x} \cdot (2x + 1) = \frac{2x+1}{x^2 + x}.
b) f(x)=(2)(x2+x)(2x+1)(2x+1)(x2+x)2=2x2+2x(4x2+4x+1)(x2+x)2=2x22x1(x2+x)2f''(x) = \frac{(2)(x^2+x) - (2x+1)(2x+1)}{(x^2+x)^2} = \frac{2x^2 + 2x - (4x^2 + 4x + 1)}{(x^2+x)^2} = \frac{-2x^2 - 2x - 1}{(x^2+x)^2}.

6. Intervals of increase and decrease:

f(x)=2x+1x(x+1)f'(x) = \frac{2x+1}{x(x+1)}. We need to check where f(x)>0f'(x) > 0 and f(x)<0f'(x) < 0. The critical points are x=1,x=1/2,x=0x = -1, x = -1/2, x = 0.
Since the domain is (,1)(0,)(-\infty, -1) \cup (0, \infty), we check the intervals (,1)(-\infty, -1) and (0,)(0, \infty).
If x<1x < -1, 2x+1<02x+1 < 0, x<0x < 0, x+1<0x+1 < 0, so f(x)=()()()=()(+)<0f'(x) = \frac{(-)}{(-)(-)} = \frac{(-)}{(+)} < 0.
If x>0x > 0, 2x+1>02x+1 > 0, x>0x > 0, x+1>0x+1 > 0, so f(x)=(+)(+)(+)=(+)(+)>0f'(x) = \frac{(+)}{(+)(+)} = \frac{(+)}{(+)} > 0.
Therefore, f(x)f(x) is decreasing on (,1)(-\infty, -1) and increasing on (0,)(0, \infty).

7. Concavity:

f(x)=2x22x1(x2+x)2f''(x) = \frac{-2x^2 - 2x - 1}{(x^2+x)^2}. Since (x2+x)2>0(x^2+x)^2 > 0, the sign of f(x)f''(x) is determined by 2x22x1-2x^2 - 2x - 1. The discriminant is (2)24(2)(1)=48=4<0(-2)^2 - 4(-2)(-1) = 4 - 8 = -4 < 0. Since the leading coefficient is negative, 2x22x1<0-2x^2 - 2x - 1 < 0 for all xx. Therefore, f(x)<0f''(x) < 0 for all xx in the domain, so f(x)f(x) is concave down on (,1)(-\infty, -1) and (0,)(0, \infty).

8. Sketch: The graph has vertical asymptotes at $x = -1$ and $x = 0$. It is decreasing on $(-\infty, -1)$ and increasing on $(0, \infty)$. It is concave down everywhere. The x-intercepts are $x = \frac{-1 \pm \sqrt{5}}{2}$.

Question B3:
a) (i) limx0sin20xx20+sin20x=limx0(sinxx)201+(sinxx)20=1201+120=11+1=12\lim_{x \to 0} \frac{\sin^{20} x}{x^{20} + \sin^{20} x} = \lim_{x \to 0} \frac{(\frac{\sin x}{x})^{20}}{1 + (\frac{\sin x}{x})^{20}} = \frac{1^{20}}{1 + 1^{20}} = \frac{1}{1+1} = \frac{1}{2}.
(ii) limx16x4+x32x2+14x+2025=limxx4(16+1x2x2+1x4)4x(1+2025x)=limxx16+1x2x2+1x44x(1+2025x)\lim_{x \to -\infty} \frac{\sqrt[4]{16x^4 + x^3 - 2x^2 + 1}}{x + 2025} = \lim_{x \to -\infty} \frac{\sqrt[4]{x^4(16 + \frac{1}{x} - \frac{2}{x^2} + \frac{1}{x^4})}}{x(1 + \frac{2025}{x})} = \lim_{x \to -\infty} \frac{|x| \sqrt[4]{16 + \frac{1}{x} - \frac{2}{x^2} + \frac{1}{x^4}}}{x(1 + \frac{2025}{x})}. Since xx \to -\infty, x=x|x| = -x.
Therefore, limxx16+1x2x2+1x44x(1+2025x)=limx16+1x2x2+1x441+2025x=1641=2\lim_{x \to -\infty} \frac{-x \sqrt[4]{16 + \frac{1}{x} - \frac{2}{x^2} + \frac{1}{x^4}}}{x(1 + \frac{2025}{x})} = \lim_{x \to -\infty} \frac{-\sqrt[4]{16 + \frac{1}{x} - \frac{2}{x^2} + \frac{1}{x^4}}}{1 + \frac{2025}{x}} = \frac{-\sqrt[4]{16}}{1} = -2.
b) y=2x3x21(x42x2)3y = 2^{x^3} \sqrt{x^2 - 1} (x^4 - 2x^2)^3.
Take the natural logarithm of both sides:
ln(y)=ln(2x3x21(x42x2)3)=x3ln(2)+12ln(x21)+3ln(x42x2)\ln(y) = \ln(2^{x^3} \sqrt{x^2 - 1} (x^4 - 2x^2)^3) = x^3 \ln(2) + \frac{1}{2} \ln(x^2 - 1) + 3 \ln(x^4 - 2x^2).
Differentiate both sides with respect to xx:
yy=3x2ln(2)+122xx21+34x34xx42x2=3x2ln(2)+xx21+12x312xx42x2=3x2ln(2)+xx21+12x(x21)x2(x22)=3x2ln(2)+xx21+12(x21)x(x22)\frac{y'}{y} = 3x^2 \ln(2) + \frac{1}{2} \cdot \frac{2x}{x^2 - 1} + 3 \cdot \frac{4x^3 - 4x}{x^4 - 2x^2} = 3x^2 \ln(2) + \frac{x}{x^2 - 1} + \frac{12x^3 - 12x}{x^4 - 2x^2} = 3x^2 \ln(2) + \frac{x}{x^2 - 1} + \frac{12x(x^2 - 1)}{x^2(x^2 - 2)} = 3x^2 \ln(2) + \frac{x}{x^2 - 1} + \frac{12(x^2 - 1)}{x(x^2 - 2)}.
y=y[3x2ln(2)+xx21+12(x21)x(x22)]=2x3x21(x42x2)3[3x2ln(2)+xx21+12(x21)x(x22)]y' = y [3x^2 \ln(2) + \frac{x}{x^2 - 1} + \frac{12(x^2 - 1)}{x(x^2 - 2)}] = 2^{x^3} \sqrt{x^2 - 1} (x^4 - 2x^2)^3 [3x^2 \ln(2) + \frac{x}{x^2 - 1} + \frac{12(x^2 - 1)}{x(x^2 - 2)}].
c) Let xx be the number. Then x=x+2x = \sqrt{x} + 2. So x=x2\sqrt{x} = x - 2. Squaring both sides, x=(x2)2=x24x+4x = (x-2)^2 = x^2 - 4x + 4. So x25x+4=0x^2 - 5x + 4 = 0. Factoring, (x4)(x1)=0(x-4)(x-1) = 0. So x=4x = 4 or x=1x = 1. If x=4x = 4, then 4+2=2+2=4\sqrt{4} + 2 = 2 + 2 = 4, so x=4x = 4 works. If x=1x = 1, then 1+2=1+2=31\sqrt{1} + 2 = 1 + 2 = 3 \neq 1, so x=1x = 1 does not work.
Therefore, the number is
4.

3. Final Answer

Question B2:

1. Domain: $(-\infty, -1) \cup (0, \infty)$

2. x-intercepts: $x = \frac{-1 \pm \sqrt{5}}{2}$

3. Limit: $\lim_{x \to -1^-} f(x) = -\infty$, $\lim_{x \to 0^+} f(x) = -\infty$. Vertical asymptotes: $x = -1, x = 0$

4. Limit: $\lim_{x \to \pm \infty} f(x) = \infty$

5. a) $f'(x) = \frac{2x+1}{x^2+x}$

b) f(x)=2x22x1(x2+x)2f''(x) = \frac{-2x^2 - 2x - 1}{(x^2+x)^2}

6. Decreasing on $(-\infty, -1)$ and increasing on $(0, \infty)$

7. Concave down on $(-\infty, -1)$ and $(0, \infty)$

8. Sketch: (see explanation above)

Question B3:
a) (i) 12\frac{1}{2}
(ii) 2-2
b) y=2x3x21(x42x2)3[3x2ln(2)+xx21+12(x21)x(x22)]y' = 2^{x^3} \sqrt{x^2 - 1} (x^4 - 2x^2)^3 [3x^2 \ln(2) + \frac{x}{x^2 - 1} + \frac{12(x^2 - 1)}{x(x^2 - 2)}]
c) 4

Related problems in "Analysis"

The problem asks for the derivative of the function $f(x) = x^2 \ln x$. We need to find $f'(x)$.

DifferentiationProduct RuleLogarithmic Functions
2025/6/22

We need to find the interval of continuity for the function $f(x) = \frac{1}{\sqrt{x+10}}$.

ContinuityFunctionsIntervalsSquare Roots
2025/6/22

We are given the function $f(x) = \frac{x^3}{(x+1)^2}$. The problem asks us to find the domain, inte...

CalculusDerivativesDomainInterceptsCritical PointsInflection PointsAsymptotesCurve Sketching
2025/6/21

The problem consists of multiple limit calculations. (a) $\lim_{h\to 0} \frac{(2+h)^3 - 8}{h}$ (b) $...

LimitsCalculusLimits at InfinityGreatest Integer FunctionTrigonometric Functions
2025/6/21

We are given a function $f(x) = \frac{x+1}{\lfloor 3x-2 \rfloor}$, where $\lfloor x \rfloor$ represe...

DomainContinuityFloor FunctionLimits
2025/6/21

We are given the function $f(x) = 2x - 1 + \ln(\frac{x}{x+1})$. The problem asks us to find the doma...

Function AnalysisDomainLimitsAsymptotesDerivativesMonotonicityExtreme ValuesTable of VariationsOblique AsymptoteRoot FindingApproximation
2025/6/21

The problem consists of three parts: a) Evaluate the limit $\lim_{x\to 2} \frac{|x-2| + x - 2}{x^2 -...

LimitsHyperbolic FunctionsInverse Hyperbolic Functions
2025/6/19

The problem consists of four independent questions: d) Newton's Law of Cooling: The temperature of a...

Differential EquationsNewton's Law of CoolingFunction AnalysisDefinite IntegralFundamental Theorem of CalculusCalculus
2025/6/19

The problem consists of defining concepts related to functions, determining the truth of statements ...

LimitsContinuityDifferentiabilityEpsilon-Delta DefinitionPiecewise FunctionsCritical NumbersLocal Minima
2025/6/19

The problem involves analyzing the function $f(x) = 2x - 1 + \ln(\frac{x}{x+1})$. It asks to find th...

Function AnalysisDomainLimitsAsymptotesDerivativesMonotonicityCurve SketchingEquation SolvingNumerical Approximation
2025/6/15