The problem consists of three parts: a) Evaluate the limit $\lim_{x\to 2} \frac{|x-2| + x - 2}{x^2 - 4}$ by computing the one-sided limits. b) Express $\cosh^{-1} x$ in logarithmic form for $x \ge 1$. c) Given that $\sinh x = -\frac{3}{4}$, find $\coth x$.

AnalysisLimitsHyperbolic FunctionsInverse Hyperbolic Functions
2025/6/19

1. Problem Description

The problem consists of three parts:
a) Evaluate the limit limx2x2+x2x24\lim_{x\to 2} \frac{|x-2| + x - 2}{x^2 - 4} by computing the one-sided limits.
b) Express cosh1x\cosh^{-1} x in logarithmic form for x1x \ge 1.
c) Given that sinhx=34\sinh x = -\frac{3}{4}, find cothx\coth x.

2. Solution Steps

a) We need to find limx2x2+x2x24\lim_{x\to 2} \frac{|x-2| + x - 2}{x^2 - 4}. We analyze the one-sided limits.
For x2+x \to 2^+, we have x>2x > 2, so x2=x2|x-2| = x-2. Then
limx2+x2+x2x24=limx2+(x2)+(x2)x24=limx2+2(x2)(x2)(x+2)=limx2+2x+2=22+2=24=12.\lim_{x\to 2^+} \frac{|x-2| + x - 2}{x^2 - 4} = \lim_{x\to 2^+} \frac{(x-2) + (x-2)}{x^2 - 4} = \lim_{x\to 2^+} \frac{2(x-2)}{(x-2)(x+2)} = \lim_{x\to 2^+} \frac{2}{x+2} = \frac{2}{2+2} = \frac{2}{4} = \frac{1}{2}.
For x2x \to 2^-, we have x<2x < 2, so x2=(x2)=2x|x-2| = -(x-2) = 2-x. Then
limx2x2+x2x24=limx2(x2)+(x2)x24=limx20(x2)(x+2)=limx20=0.\lim_{x\to 2^-} \frac{|x-2| + x - 2}{x^2 - 4} = \lim_{x\to 2^-} \frac{-(x-2) + (x-2)}{x^2 - 4} = \lim_{x\to 2^-} \frac{0}{(x-2)(x+2)} = \lim_{x\to 2^-} 0 = 0.
Since the one-sided limits are not equal, the limit does not exist.
b) Let y=cosh1xy = \cosh^{-1} x, so x=coshyx = \cosh y. We are given that cosh2ysinh2y=1\cosh^2 y - \sinh^2 y = 1 and coshy+sinhy=ey\cosh y + \sinh y = e^y.
From cosh2ysinh2y=1\cosh^2 y - \sinh^2 y = 1, we have cosh2y1=sinh2y\cosh^2 y - 1 = \sinh^2 y, so sinhy=±cosh2y1=±x21\sinh y = \pm \sqrt{\cosh^2 y - 1} = \pm \sqrt{x^2 - 1}.
Since y=cosh1xy = \cosh^{-1} x, y0y \ge 0, thus coshy+sinhy=ey>0\cosh y + \sinh y = e^y > 0. Also, coshy=x1\cosh y = x \ge 1. Therefore, sinhy\sinh y must have the same sign as eycoshy=eyxe^y - \cosh y = e^y - x, which depends on the value of x.
Substituting coshy=x\cosh y = x and sinhy=±x21\sinh y = \pm \sqrt{x^2 - 1} into coshy+sinhy=ey\cosh y + \sinh y = e^y, we get x±x21=eyx \pm \sqrt{x^2 - 1} = e^y. Thus, y=ln(x±x21)y = \ln(x \pm \sqrt{x^2 - 1}).
Since y0y \ge 0, and coshy=x1\cosh y = x \ge 1, sinhy=x210\sinh y = \sqrt{x^2 - 1} \ge 0.
So y=ln(x+x21)y = \ln(x + \sqrt{x^2 - 1}).
c) Given that sinhx=34\sinh x = -\frac{3}{4}, we want to find cothx=coshxsinhx\coth x = \frac{\cosh x}{\sinh x}.
We know that cosh2xsinh2x=1\cosh^2 x - \sinh^2 x = 1, so cosh2x=1+sinh2x=1+(34)2=1+916=2516\cosh^2 x = 1 + \sinh^2 x = 1 + \left(-\frac{3}{4}\right)^2 = 1 + \frac{9}{16} = \frac{25}{16}.
Thus, coshx=±2516=±54\cosh x = \pm \sqrt{\frac{25}{16}} = \pm \frac{5}{4}. Since coshx\cosh x is always positive, coshx=54\cosh x = \frac{5}{4}.
Then, cothx=coshxsinhx=5/43/4=53=53\coth x = \frac{\cosh x}{\sinh x} = \frac{5/4}{-3/4} = \frac{5}{-3} = -\frac{5}{3}.

3. Final Answer

a) The limit does not exist because the one-sided limits are not equal.
b) cosh1x=ln(x+x21)\cosh^{-1} x = \ln(x + \sqrt{x^2 - 1})
c) cothx=53\coth x = -\frac{5}{3}

Related problems in "Analysis"

The problem asks for the derivative of the function $f(x) = x^2 \ln x$. We need to find $f'(x)$.

DifferentiationProduct RuleLogarithmic Functions
2025/6/22

We need to find the interval of continuity for the function $f(x) = \frac{1}{\sqrt{x+10}}$.

ContinuityFunctionsIntervalsSquare Roots
2025/6/22

We are given the function $f(x) = \frac{x^3}{(x+1)^2}$. The problem asks us to find the domain, inte...

CalculusDerivativesDomainInterceptsCritical PointsInflection PointsAsymptotesCurve Sketching
2025/6/21

The problem consists of multiple limit calculations. (a) $\lim_{h\to 0} \frac{(2+h)^3 - 8}{h}$ (b) $...

LimitsCalculusLimits at InfinityGreatest Integer FunctionTrigonometric Functions
2025/6/21

We are given a function $f(x) = \frac{x+1}{\lfloor 3x-2 \rfloor}$, where $\lfloor x \rfloor$ represe...

DomainContinuityFloor FunctionLimits
2025/6/21

We are given the function $f(x) = 2x - 1 + \ln(\frac{x}{x+1})$. The problem asks us to find the doma...

Function AnalysisDomainLimitsAsymptotesDerivativesMonotonicityExtreme ValuesTable of VariationsOblique AsymptoteRoot FindingApproximation
2025/6/21

The problem consists of four independent questions: d) Newton's Law of Cooling: The temperature of a...

Differential EquationsNewton's Law of CoolingFunction AnalysisDefinite IntegralFundamental Theorem of CalculusCalculus
2025/6/19

We are given the function $f(x) = \ln(x^2 + x)$. We need to find the domain of $f$, the x-intercepts...

CalculusLimitsDerivativesDomainAsymptotesConcavityGraphingLogarithmic Differentiation
2025/6/19

The problem consists of defining concepts related to functions, determining the truth of statements ...

LimitsContinuityDifferentiabilityEpsilon-Delta DefinitionPiecewise FunctionsCritical NumbersLocal Minima
2025/6/19

The problem involves analyzing the function $f(x) = 2x - 1 + \ln(\frac{x}{x+1})$. It asks to find th...

Function AnalysisDomainLimitsAsymptotesDerivativesMonotonicityCurve SketchingEquation SolvingNumerical Approximation
2025/6/15