The first problem asks us to find which of the given values of $x$ are solutions to the inequality $\frac{7x+6}{2} \le 3x+2$. The second problem asks us to find the solution set to the inequality $2x-3 > \frac{2x-5}{2}$.

AlgebraInequalitiesLinear InequalitiesSolution SetsAlgebraic Manipulation
2025/3/25

1. Problem Description

The first problem asks us to find which of the given values of xx are solutions to the inequality 7x+623x+2\frac{7x+6}{2} \le 3x+2.
The second problem asks us to find the solution set to the inequality 2x3>2x522x-3 > \frac{2x-5}{2}.

2. Solution Steps

Problem 1:
We need to check each value of xx to see if it satisfies the inequality.
A. x=3x=-3: 7(3)+623(3)+221+629+215277.57\frac{7(-3)+6}{2} \le 3(-3)+2 \Rightarrow \frac{-21+6}{2} \le -9+2 \Rightarrow \frac{-15}{2} \le -7 \Rightarrow -7.5 \le -7. This is true.
B. x=2x=-2: 7(2)+623(2)+214+626+282444\frac{7(-2)+6}{2} \le 3(-2)+2 \Rightarrow \frac{-14+6}{2} \le -6+2 \Rightarrow \frac{-8}{2} \le -4 \Rightarrow -4 \le -4. This is true.
C. x=1x=-1: 7(1)+623(1)+27+623+21210.51\frac{7(-1)+6}{2} \le 3(-1)+2 \Rightarrow \frac{-7+6}{2} \le -3+2 \Rightarrow \frac{-1}{2} \le -1 \Rightarrow -0.5 \le -1. This is false.
D. x=0x=0: 7(0)+623(0)+262232\frac{7(0)+6}{2} \le 3(0)+2 \Rightarrow \frac{6}{2} \le 2 \Rightarrow 3 \le 2. This is false.
E. x=1x=1: 7(1)+623(1)+213256.55\frac{7(1)+6}{2} \le 3(1)+2 \Rightarrow \frac{13}{2} \le 5 \Rightarrow 6.5 \le 5. This is false.
F. x=2x=2: 7(2)+623(2)+214+626+22028108\frac{7(2)+6}{2} \le 3(2)+2 \Rightarrow \frac{14+6}{2} \le 6+2 \Rightarrow \frac{20}{2} \le 8 \Rightarrow 10 \le 8. This is false.
G. x=3x=3: 7(3)+623(3)+221+629+22721113.511\frac{7(3)+6}{2} \le 3(3)+2 \Rightarrow \frac{21+6}{2} \le 9+2 \Rightarrow \frac{27}{2} \le 11 \Rightarrow 13.5 \le 11. This is false.
Problem 2:
We need to solve the inequality 2x3>2x522x-3 > \frac{2x-5}{2}.
Multiply both sides by 2:
2(2x3)>2x52(2x-3) > 2x-5
4x6>2x54x-6 > 2x-5
Subtract 2x2x from both sides:
2x6>52x-6 > -5
Add 6 to both sides:
2x>12x > 1
Divide both sides by 2:
x>12x > \frac{1}{2}

3. Final Answer

Problem 1: A, B
Problem 2: B

Related problems in "Algebra"

The problem asks us to evaluate the expression $(2^0) \cdot (\frac{2^{3 \cdot 3^3}}{2^3})$.

ExponentsSimplificationOrder of Operations
2025/4/16

The problem asks to evaluate the expression $(\frac{1}{2})^{3^2} \cdot (\frac{1}{2})^3$.

ExponentsSimplificationOrder of OperationsPowers of Two
2025/4/16

We are asked to find the value of $n$ in the equation $(9^n)^4 = 9^{12}$.

ExponentsEquationsSolving Equations
2025/4/16

We are asked to find the least common denominator (LCD) of the following rational expressions: $\fra...

Rational ExpressionsLeast Common DenominatorPolynomial FactorizationAlgebraic Manipulation
2025/4/16

The problem asks to find the value(s) of $x$ for which the expression $\frac{x-4}{5x-40} \div \frac{...

Rational ExpressionsUndefined ExpressionsDomain
2025/4/16

Simplify the expression: $\frac{(2x^3y^1z^{-2})^{-2}x^4y^8z^{-2}}{5x^5y^4z^2}$

ExponentsSimplificationAlgebraic Expressions
2025/4/16

The problem asks us to solve the linear equation $15 + x = 3x - 17$ for the variable $x$.

Linear EquationsSolving Equations
2025/4/16

The problem asks to graph the equation $y = x^2 - 4$.

ParabolaGraphingQuadratic EquationsVertexIntercepts
2025/4/15

The problem asks us to find the values of the variables $m$ and $y$ in the given expressions that wo...

Undefined ExpressionsRational ExpressionsSolving Equations
2025/4/15

We are given the equation $\frac{m^2}{4} = 9$ and need to solve for $m$.

EquationsSolving EquationsSquare Roots
2025/4/15