The problem asks to find the sum $S_n$ of the following two series: (1) $1 \cdot 3, 3 \cdot 5, 5 \cdot 7, \dots, (2n-1)(2n+1)$ (2) $1^2 \cdot 2, 2^2 \cdot 3, 3^2 \cdot 4, \dots, n^2(n+1)$

AlgebraSeriesSummationSequencesAlgebraic Manipulation
2025/6/11

1. Problem Description

The problem asks to find the sum SnS_n of the following two series:
(1) 13,35,57,,(2n1)(2n+1)1 \cdot 3, 3 \cdot 5, 5 \cdot 7, \dots, (2n-1)(2n+1)
(2) 122,223,324,,n2(n+1)1^2 \cdot 2, 2^2 \cdot 3, 3^2 \cdot 4, \dots, n^2(n+1)

2. Solution Steps

(1) Let ak=(2k1)(2k+1)a_k = (2k-1)(2k+1) be the kk-th term of the series. Then
ak=4k21a_k = 4k^2 - 1
We want to find the sum Sn=k=1nak=k=1n(4k21)S_n = \sum_{k=1}^n a_k = \sum_{k=1}^n (4k^2 - 1).
Using the formulas:
k=1nk2=n(n+1)(2n+1)6\sum_{k=1}^n k^2 = \frac{n(n+1)(2n+1)}{6}
k=1n1=n\sum_{k=1}^n 1 = n
Then, Sn=k=1n(4k21)=4k=1nk2k=1n1=4n(n+1)(2n+1)6n=2n(n+1)(2n+1)3nS_n = \sum_{k=1}^n (4k^2 - 1) = 4 \sum_{k=1}^n k^2 - \sum_{k=1}^n 1 = 4 \cdot \frac{n(n+1)(2n+1)}{6} - n = \frac{2n(n+1)(2n+1)}{3} - n.
Sn=2n(n+1)(2n+1)3n3=n(2(n+1)(2n+1)3)3=n(2(2n2+3n+1)3)3=n(4n2+6n+23)3=n(4n2+6n1)3S_n = \frac{2n(n+1)(2n+1) - 3n}{3} = \frac{n(2(n+1)(2n+1) - 3)}{3} = \frac{n(2(2n^2+3n+1) - 3)}{3} = \frac{n(4n^2 + 6n + 2 - 3)}{3} = \frac{n(4n^2 + 6n - 1)}{3}.
Therefore, Sn=4n3+6n2n3S_n = \frac{4n^3 + 6n^2 - n}{3}.
(2) Let ak=k2(k+1)a_k = k^2(k+1) be the kk-th term of the series. Then ak=k3+k2a_k = k^3 + k^2.
We want to find the sum Sn=k=1nak=k=1n(k3+k2)S_n = \sum_{k=1}^n a_k = \sum_{k=1}^n (k^3 + k^2).
Using the formulas:
k=1nk3=(n(n+1)2)2\sum_{k=1}^n k^3 = (\frac{n(n+1)}{2})^2
k=1nk2=n(n+1)(2n+1)6\sum_{k=1}^n k^2 = \frac{n(n+1)(2n+1)}{6}
Then, Sn=k=1n(k3+k2)=k=1nk3+k=1nk2=(n(n+1)2)2+n(n+1)(2n+1)6=n2(n+1)24+n(n+1)(2n+1)6S_n = \sum_{k=1}^n (k^3 + k^2) = \sum_{k=1}^n k^3 + \sum_{k=1}^n k^2 = (\frac{n(n+1)}{2})^2 + \frac{n(n+1)(2n+1)}{6} = \frac{n^2(n+1)^2}{4} + \frac{n(n+1)(2n+1)}{6}.
Sn=3n2(n+1)2+2n(n+1)(2n+1)12=n(n+1)(3n(n+1)+2(2n+1))12=n(n+1)(3n2+3n+4n+2)12=n(n+1)(3n2+7n+2)12S_n = \frac{3n^2(n+1)^2 + 2n(n+1)(2n+1)}{12} = \frac{n(n+1)(3n(n+1) + 2(2n+1))}{12} = \frac{n(n+1)(3n^2 + 3n + 4n + 2)}{12} = \frac{n(n+1)(3n^2 + 7n + 2)}{12}.
Sn=n(n+1)(3n+1)(n+2)12S_n = \frac{n(n+1)(3n+1)(n+2)}{12}.
Sn=n(n+1)(3n2+7n+2)12=3n4+10n3+9n2+2n12S_n = \frac{n(n+1)(3n^2+7n+2)}{12} = \frac{3n^4 + 10n^3 + 9n^2 + 2n}{12}.

3. Final Answer

(1) Sn=4n3+6n2n3S_n = \frac{4n^3 + 6n^2 - n}{3}
(2) Sn=3n4+10n3+9n2+2n12=n(n+1)(3n+1)(n+2)12S_n = \frac{3n^4 + 10n^3 + 9n^2 + 2n}{12} = \frac{n(n+1)(3n+1)(n+2)}{12}

Related problems in "Algebra"

We are given a 3x3 matrix $A$ and asked to find all the minors $|A_{ij}|$ of the matrix. The given m...

MatricesDeterminantsMinors
2025/7/29

A binary operation $*$ is defined on the set of real numbers $R$ by $m * n = m + n - \frac{1}{2}n$. ...

Binary OperationReal NumbersExpression Evaluation
2025/7/29

We are given a 4x4 matrix $A$ and asked to find its determinant $|A|$ and the (3,4) entry of its inv...

Linear AlgebraMatrix DeterminantMatrix InverseCofactor ExpansionAdjugate Matrix
2025/7/29

The problem is to solve the quadratic equation $55n^2 - 33n - 1940 = 0$ for the variable $n$.

Quadratic EquationsQuadratic FormulaRoots of Equation
2025/7/25

We need to solve the equation $\frac{x+6}{x+4} = \frac{-5}{3x}$ for $x$.

EquationsRational EquationsQuadratic EquationsSolving EquationsAlgebraic Manipulation
2025/7/24

The problem asks to factorize the quadratic expression $3x^2 - 2x - 1$.

Quadratic EquationsFactorizationAlgebraic Manipulation
2025/7/24

We are asked to solve four problems: (a) Expand and simplify the expression $6(2y-3) - 5(y+1)$. (b) ...

Algebraic SimplificationExponentsDifference of SquaresEquationsFactorization
2025/7/22

We are asked to simplify the expression $(a^{-2}b^3)^{-2}$, writing the answer with positive powers.

ExponentsSimplificationPower Rules
2025/7/22

A group of children bought a certain number of apples. If each apple is cut into 4 equal pieces and ...

System of EquationsWord Problem
2025/7/21

The problem asks to simplify the expression $\frac{x+1}{y} \div \frac{2(x+1)}{x}$.

Algebraic simplificationFractionsVariable expressions
2025/7/21