The problem asks to find the sum $S_n$ of the following two series: (1) $1 \cdot 3, 3 \cdot 5, 5 \cdot 7, \dots, (2n-1)(2n+1)$ (2) $1^2 \cdot 2, 2^2 \cdot 3, 3^2 \cdot 4, \dots, n^2(n+1)$

AlgebraSeriesSummationSequencesAlgebraic Manipulation
2025/6/11

1. Problem Description

The problem asks to find the sum SnS_n of the following two series:
(1) 13,35,57,,(2n1)(2n+1)1 \cdot 3, 3 \cdot 5, 5 \cdot 7, \dots, (2n-1)(2n+1)
(2) 122,223,324,,n2(n+1)1^2 \cdot 2, 2^2 \cdot 3, 3^2 \cdot 4, \dots, n^2(n+1)

2. Solution Steps

(1) Let ak=(2k1)(2k+1)a_k = (2k-1)(2k+1) be the kk-th term of the series. Then
ak=4k21a_k = 4k^2 - 1
We want to find the sum Sn=k=1nak=k=1n(4k21)S_n = \sum_{k=1}^n a_k = \sum_{k=1}^n (4k^2 - 1).
Using the formulas:
k=1nk2=n(n+1)(2n+1)6\sum_{k=1}^n k^2 = \frac{n(n+1)(2n+1)}{6}
k=1n1=n\sum_{k=1}^n 1 = n
Then, Sn=k=1n(4k21)=4k=1nk2k=1n1=4n(n+1)(2n+1)6n=2n(n+1)(2n+1)3nS_n = \sum_{k=1}^n (4k^2 - 1) = 4 \sum_{k=1}^n k^2 - \sum_{k=1}^n 1 = 4 \cdot \frac{n(n+1)(2n+1)}{6} - n = \frac{2n(n+1)(2n+1)}{3} - n.
Sn=2n(n+1)(2n+1)3n3=n(2(n+1)(2n+1)3)3=n(2(2n2+3n+1)3)3=n(4n2+6n+23)3=n(4n2+6n1)3S_n = \frac{2n(n+1)(2n+1) - 3n}{3} = \frac{n(2(n+1)(2n+1) - 3)}{3} = \frac{n(2(2n^2+3n+1) - 3)}{3} = \frac{n(4n^2 + 6n + 2 - 3)}{3} = \frac{n(4n^2 + 6n - 1)}{3}.
Therefore, Sn=4n3+6n2n3S_n = \frac{4n^3 + 6n^2 - n}{3}.
(2) Let ak=k2(k+1)a_k = k^2(k+1) be the kk-th term of the series. Then ak=k3+k2a_k = k^3 + k^2.
We want to find the sum Sn=k=1nak=k=1n(k3+k2)S_n = \sum_{k=1}^n a_k = \sum_{k=1}^n (k^3 + k^2).
Using the formulas:
k=1nk3=(n(n+1)2)2\sum_{k=1}^n k^3 = (\frac{n(n+1)}{2})^2
k=1nk2=n(n+1)(2n+1)6\sum_{k=1}^n k^2 = \frac{n(n+1)(2n+1)}{6}
Then, Sn=k=1n(k3+k2)=k=1nk3+k=1nk2=(n(n+1)2)2+n(n+1)(2n+1)6=n2(n+1)24+n(n+1)(2n+1)6S_n = \sum_{k=1}^n (k^3 + k^2) = \sum_{k=1}^n k^3 + \sum_{k=1}^n k^2 = (\frac{n(n+1)}{2})^2 + \frac{n(n+1)(2n+1)}{6} = \frac{n^2(n+1)^2}{4} + \frac{n(n+1)(2n+1)}{6}.
Sn=3n2(n+1)2+2n(n+1)(2n+1)12=n(n+1)(3n(n+1)+2(2n+1))12=n(n+1)(3n2+3n+4n+2)12=n(n+1)(3n2+7n+2)12S_n = \frac{3n^2(n+1)^2 + 2n(n+1)(2n+1)}{12} = \frac{n(n+1)(3n(n+1) + 2(2n+1))}{12} = \frac{n(n+1)(3n^2 + 3n + 4n + 2)}{12} = \frac{n(n+1)(3n^2 + 7n + 2)}{12}.
Sn=n(n+1)(3n+1)(n+2)12S_n = \frac{n(n+1)(3n+1)(n+2)}{12}.
Sn=n(n+1)(3n2+7n+2)12=3n4+10n3+9n2+2n12S_n = \frac{n(n+1)(3n^2+7n+2)}{12} = \frac{3n^4 + 10n^3 + 9n^2 + 2n}{12}.

3. Final Answer

(1) Sn=4n3+6n2n3S_n = \frac{4n^3 + 6n^2 - n}{3}
(2) Sn=3n4+10n3+9n2+2n12=n(n+1)(3n+1)(n+2)12S_n = \frac{3n^4 + 10n^3 + 9n^2 + 2n}{12} = \frac{n(n+1)(3n+1)(n+2)}{12}

Related problems in "Algebra"

Find two positive numbers whose sum is 110 and whose product is maximized.

OptimizationQuadratic FunctionsCalculus (Implicitly)MaximizationWord Problem
2025/6/12

The problem requires us to analyze the transformation of a parabola from its parent function $f(x) =...

Quadratic FunctionsTransformationsDomainRangeFunction Notation
2025/6/12

We are given three functions: $f(x) = \frac{1}{5}x^2$, $p(x) = -x$, and $z(x) = x + 8$. We need to f...

Function CompositionTransformationsQuadratic FunctionsVertical CompressionVertical Shift
2025/6/12

We are given the graph of a parabola $g(x)$ which is a transformation of the parent function $f(x) =...

Quadratic FunctionsTransformations of FunctionsVertex FormDomain and RangeParabolas
2025/6/12

We are given three functions: $f(x) = -\frac{1}{2}x^2$, $z(x) = x - 4$, and $p(x) = x + 5$. First, w...

Function CompositionTransformations of FunctionsQuadratic FunctionsVertical CompressionHorizontal ShiftReflection
2025/6/12

The problem describes a transformation of the parent function $f(x) = |x|$ to a transformed function...

Function TransformationsAbsolute Value FunctionsDomain and RangeGraphing
2025/6/12

We are given three functions: $f(x) = \frac{1}{x}$, $r(x) = x+4$, and $m(x) = 8x$. We need to find t...

FunctionsComposite FunctionsTransformationsVertical StretchHorizontal Shift
2025/6/12

Given the point $(2, 5)$ on the graph of $f(x)$, we want to find a point on the graph of $y = f(x - ...

Function TransformationsGraphingHorizontal ShiftVertical Shift
2025/6/12

The point $(-9, 1)$ lies on the graph of $f(x)$. Given the transformation $g(x) = 2f(-x) + 3$, we ne...

FunctionsTransformationsGraphing
2025/6/12

The problem asks us to find the function notation and equation form of a transformed absolute value ...

FunctionsTransformationsAbsolute ValueFunction NotationVertical StretchVertical ShiftHorizontal Shift
2025/6/12