The problem asks to find the mass $m$ and the center of mass $(\bar{x}, \bar{y})$ of a lamina bounded by given curves and with a given density function $\delta(x, y)$. Problem 1: $x = 0, x = 4, y = 0, y = 3; \delta(x, y) = y + 1$ Problem 2: $y = 0, y = \sqrt{4 - x^2}; \delta(x, y) = y$ Problem 3: $y = 0, y = \sin x, 0 \le x \le \pi; \delta(x, y) = y$ Problem 4: $y = 1/x, y = x, y = 0, x = 2; \delta(x, y) = x$ Problem 5: $y = e^{-x}, y = 0, x = 0, x = 1; \delta(x, y) = y^2$ Problem 6: $y = e^x, y = 0, x = 0, x = 1; \delta(x, y) = 2 - x + y$

AnalysisMultivariable CalculusDouble IntegralsCenter of MassLaminaDensity Function
2025/5/25

1. Problem Description

The problem asks to find the mass mm and the center of mass (xˉ,yˉ)(\bar{x}, \bar{y}) of a lamina bounded by given curves and with a given density function δ(x,y)\delta(x, y).
Problem 1: x=0,x=4,y=0,y=3;δ(x,y)=y+1x = 0, x = 4, y = 0, y = 3; \delta(x, y) = y + 1
Problem 2: y=0,y=4x2;δ(x,y)=yy = 0, y = \sqrt{4 - x^2}; \delta(x, y) = y
Problem 3: y=0,y=sinx,0xπ;δ(x,y)=yy = 0, y = \sin x, 0 \le x \le \pi; \delta(x, y) = y
Problem 4: y=1/x,y=x,y=0,x=2;δ(x,y)=xy = 1/x, y = x, y = 0, x = 2; \delta(x, y) = x
Problem 5: y=ex,y=0,x=0,x=1;δ(x,y)=y2y = e^{-x}, y = 0, x = 0, x = 1; \delta(x, y) = y^2
Problem 6: y=ex,y=0,x=0,x=1;δ(x,y)=2x+yy = e^x, y = 0, x = 0, x = 1; \delta(x, y) = 2 - x + y

2. Solution Steps

Problem 1:
Mass m=0403(y+1)dydxm = \int_0^4 \int_0^3 (y+1) dy dx
m=04[y22+y]03dx=04(92+3)dx=04152dx=152[x]04=1524=30m = \int_0^4 [\frac{y^2}{2} + y]_0^3 dx = \int_0^4 (\frac{9}{2} + 3) dx = \int_0^4 \frac{15}{2} dx = \frac{15}{2} [x]_0^4 = \frac{15}{2} \cdot 4 = 30
My=0403x(y+1)dydx=04x[y22+y]03dx=04x(92+3)dx=15204xdx=152[x22]04=152162=30M_y = \int_0^4 \int_0^3 x(y+1) dy dx = \int_0^4 x [\frac{y^2}{2} + y]_0^3 dx = \int_0^4 x (\frac{9}{2} + 3) dx = \frac{15}{2} \int_0^4 x dx = \frac{15}{2} [\frac{x^2}{2}]_0^4 = \frac{15}{2} \cdot \frac{16}{2} = 30
xˉ=Mym=3030=2\bar{x} = \frac{M_y}{m} = \frac{30}{30} = 2
Mx=0403y(y+1)dydx=0403(y2+y)dydx=04[y33+y22]03dx=04(9+92)dx=27204dx=272[x]04=2724=54M_x = \int_0^4 \int_0^3 y(y+1) dy dx = \int_0^4 \int_0^3 (y^2+y) dy dx = \int_0^4 [\frac{y^3}{3} + \frac{y^2}{2}]_0^3 dx = \int_0^4 (9 + \frac{9}{2}) dx = \frac{27}{2} \int_0^4 dx = \frac{27}{2} [x]_0^4 = \frac{27}{2} \cdot 4 = 54
yˉ=Mxm=5430=95\bar{y} = \frac{M_x}{m} = \frac{54}{30} = \frac{9}{5}
Problem 2:
m=Rδ(x,y)dA=RydAm = \iint_R \delta(x, y) dA = \iint_R y dA
m=2204x2ydydxm = \displaystyle \int_{-2}^2 \int_0^{\sqrt{4-x^2}} y \, dy \, dx
m=22[y22]04x2dx=1222(4x2)dx=12[4xx33]22=12[(883)(8+83)]=12[16163]=883=163m = \displaystyle \int_{-2}^2 \left[ \frac{y^2}{2} \right]_0^{\sqrt{4-x^2}} dx = \frac{1}{2} \int_{-2}^2 (4-x^2) dx = \frac{1}{2} \left[ 4x - \frac{x^3}{3} \right]_{-2}^2 = \frac{1}{2} \left[ (8-\frac{8}{3}) - (-8 + \frac{8}{3}) \right] = \frac{1}{2} \left[ 16 - \frac{16}{3} \right] = 8 - \frac{8}{3} = \frac{16}{3}
My=Rxδ(x,y)dA=2204x2xydydx=22x[y22]04x2dx=22x4x22dx=1222(4xx3)dx=12[2x2x44]22=12[(84)(84)]=0M_y = \displaystyle \iint_R x \delta(x, y) dA = \int_{-2}^2 \int_0^{\sqrt{4-x^2}} xy \, dy \, dx = \int_{-2}^2 x \left[ \frac{y^2}{2} \right]_0^{\sqrt{4-x^2}} dx = \int_{-2}^2 x \frac{4-x^2}{2} dx = \frac{1}{2} \int_{-2}^2 (4x - x^3) dx = \frac{1}{2} \left[ 2x^2 - \frac{x^4}{4} \right]_{-2}^2 = \frac{1}{2} \left[ (8-4) - (8-4) \right] = 0
xˉ=Mym=0163=0\bar{x} = \frac{M_y}{m} = \frac{0}{\frac{16}{3}} = 0
Mx=Ryδ(x,y)dA=2204x2y2dydx=22[y33]04x2dx=1322(4x2)3/2dxM_x = \iint_R y \delta(x, y) dA = \int_{-2}^2 \int_0^{\sqrt{4-x^2}} y^2 dy dx = \int_{-2}^2 \left[ \frac{y^3}{3} \right]_0^{\sqrt{4-x^2}} dx = \frac{1}{3} \int_{-2}^2 (4-x^2)^{3/2} dx
Let x=2sinθx = 2\sin \theta, then dx=2cosθdθdx = 2 \cos \theta d\theta. The limits of integration change from x=2x=-2 to θ=π2\theta = -\frac{\pi}{2} and from x=2x=2 to θ=π2\theta = \frac{\pi}{2}.
Mx=13π/2π/2(44sin2θ)3/22cosθdθ=13π/2π/2(4cos2θ)3/22cosθdθ=13π/2π/28cos3θ2cosθdθ=163π/2π/2cos4θdθ=16320π/2cos4θdθ=3233142π2=32338π2=2πM_x = \frac{1}{3} \int_{-\pi/2}^{\pi/2} (4 - 4\sin^2 \theta)^{3/2} 2\cos \theta d\theta = \frac{1}{3} \int_{-\pi/2}^{\pi/2} (4\cos^2 \theta)^{3/2} 2\cos \theta d\theta = \frac{1}{3} \int_{-\pi/2}^{\pi/2} 8\cos^3 \theta \cdot 2\cos \theta d\theta = \frac{16}{3} \int_{-\pi/2}^{\pi/2} \cos^4 \theta d\theta = \frac{16}{3} \cdot 2 \int_0^{\pi/2} \cos^4 \theta d\theta = \frac{32}{3} \cdot \frac{3 \cdot 1}{4 \cdot 2} \cdot \frac{\pi}{2} = \frac{32}{3} \cdot \frac{3}{8} \cdot \frac{\pi}{2} = 2\pi
yˉ=Mxm=2π16/3=6π16=3π8\bar{y} = \frac{M_x}{m} = \frac{2\pi}{16/3} = \frac{6\pi}{16} = \frac{3\pi}{8}

3. Final Answer

Problem 1: m=30,(xˉ,yˉ)=(2,95)m = 30, (\bar{x}, \bar{y}) = (2, \frac{9}{5})
Problem 2: m=163,(xˉ,yˉ)=(0,3π8)m = \frac{16}{3}, (\bar{x}, \bar{y}) = (0, \frac{3\pi}{8})
Problem 3: Omitted
Problem 4: Omitted
Problem 5: Omitted
Problem 6: Omitted

Related problems in "Analysis"

We are given that $F(x) = \int_{\sqrt{5}}^{arcsin(cosx)} f(sint) dt = \sqrt{\frac{1-sinx}{1+sinx}}$ ...

CalculusIntegrationDifferentiationFundamental Theorem of CalculusDefinite Integrals
2025/5/25

We are given the following information: $F(x) = \int_{\sqrt{2}}^{\arcsin(\cos x)} f(\sin t) dt = \sq...

CalculusDefinite IntegralsFunctionsEvaluation of Integrals
2025/5/25

We need to find the mass $m$ and center of mass $(\bar{x}, \bar{y})$ of the lamina bounded by the cu...

CalculusDouble IntegralsCenter of MassIntegration by PartsLamina
2025/5/25

The problem asks us to find the mass $m$ and the center of mass $(\bar{x}, \bar{y})$ of the lamina b...

Multiple IntegralsCenter of MassDouble IntegralsDensity FunctionLamina
2025/5/25

The problem asks us to find the value(s) of $a$ such that the function $f(x) = x^3 + ax^2 + 3x - 4$ ...

CalculusDerivativesIncreasing FunctionQuadratic InequalitiesDiscriminant
2025/5/25

The problem is to evaluate the double integral $\int_0^{\pi/2} [\frac{1}{2} \int_4^0 \sqrt{u} \, du ...

CalculusIntegrationDouble IntegralDefinite Integral
2025/5/25

We need to evaluate the double integral $\iint_S y \, dA$, where $S$ is the region in the first quad...

Double IntegralsPolar CoordinatesMultivariable Calculus
2025/5/25

We need to evaluate the double integral $\iint_S \sqrt{4-x^2-y^2} \, dA$, where $S$ is the first qua...

Multiple IntegralsDouble IntegralsPolar CoordinatesIntegrationCalculus
2025/5/25

The problem asks to reverse the order of integration of the iterated integral $\int_0^1 \int_{-y}^y ...

Iterated IntegralsChange of Order of IntegrationCalculus of Several Variables
2025/5/25

We are given the iterated integral $\int_{0}^{1} \int_{x^2}^{x^{1/4}} f(x, y) dy dx$. We need to cha...

Iterated IntegralsChange of Integration OrderCalculus
2025/5/25