We need to evaluate the double integral $\iint_S y \, dA$, where $S$ is the region in the first quadrant that is inside the circle $x^2 + y^2 = 4$ and outside the circle $x^2 + y^2 = 1$. We are instructed to use polar coordinates.

AnalysisDouble IntegralsPolar CoordinatesMultivariable Calculus
2025/5/25

1. Problem Description

We need to evaluate the double integral SydA\iint_S y \, dA, where SS is the region in the first quadrant that is inside the circle x2+y2=4x^2 + y^2 = 4 and outside the circle x2+y2=1x^2 + y^2 = 1. We are instructed to use polar coordinates.

2. Solution Steps

First, we convert the equations to polar coordinates. We have x=rcosθx = r\cos\theta and y=rsinθy = r\sin\theta.
The region SS is described by 1x2+y241 \le x^2 + y^2 \le 4, which translates to 1r241 \le r^2 \le 4, or 1r21 \le r \le 2. Since we are in the first quadrant, we have 0θπ/20 \le \theta \le \pi/2.
Also, dA=rdrdθdA = r \, dr \, d\theta, so ydA=rsinθrdrdθ=r2sinθdrdθy \, dA = r\sin\theta \cdot r \, dr \, d\theta = r^2 \sin\theta \, dr \, d\theta.
The integral becomes
SydA=0π/212r2sinθdrdθ=0π/2sinθ(12r2dr)dθ \iint_S y \, dA = \int_0^{\pi/2} \int_1^2 r^2 \sin\theta \, dr \, d\theta = \int_0^{\pi/2} \sin\theta \left( \int_1^2 r^2 \, dr \right) d\theta
First, we evaluate the inner integral:
12r2dr=[r33]12=233133=8313=73 \int_1^2 r^2 \, dr = \left[ \frac{r^3}{3} \right]_1^2 = \frac{2^3}{3} - \frac{1^3}{3} = \frac{8}{3} - \frac{1}{3} = \frac{7}{3}
Now, we evaluate the outer integral:
0π/2sinθ(73)dθ=730π/2sinθdθ=73[cosθ]0π/2=73(cos(π2)(cos(0)))=73(0(1))=73(1)=73 \int_0^{\pi/2} \sin\theta \left( \frac{7}{3} \right) d\theta = \frac{7}{3} \int_0^{\pi/2} \sin\theta \, d\theta = \frac{7}{3} \left[ -\cos\theta \right]_0^{\pi/2} = \frac{7}{3} \left( -\cos\left(\frac{\pi}{2}\right) - (-\cos(0)) \right) = \frac{7}{3} ( -0 - (-1) ) = \frac{7}{3} (1) = \frac{7}{3}

3. Final Answer

73\frac{7}{3}

Related problems in "Analysis"

We are given the following information: $F(x) = \int_{\sqrt{2}}^{\arcsin(\cos x)} f(\sin t) dt = \sq...

CalculusDefinite IntegralsFunctionsEvaluation of Integrals
2025/5/25

We need to find the mass $m$ and center of mass $(\bar{x}, \bar{y})$ of the lamina bounded by the cu...

CalculusDouble IntegralsCenter of MassIntegration by PartsLamina
2025/5/25

The problem asks us to find the mass $m$ and the center of mass $(\bar{x}, \bar{y})$ of the lamina b...

Multiple IntegralsCenter of MassDouble IntegralsDensity FunctionLamina
2025/5/25

The problem asks to find the mass $m$ and the center of mass $(\bar{x}, \bar{y})$ of a lamina bounde...

Multivariable CalculusDouble IntegralsCenter of MassLaminaDensity Function
2025/5/25

The problem asks us to find the value(s) of $a$ such that the function $f(x) = x^3 + ax^2 + 3x - 4$ ...

CalculusDerivativesIncreasing FunctionQuadratic InequalitiesDiscriminant
2025/5/25

The problem is to evaluate the double integral $\int_0^{\pi/2} [\frac{1}{2} \int_4^0 \sqrt{u} \, du ...

CalculusIntegrationDouble IntegralDefinite Integral
2025/5/25

We need to evaluate the double integral $\iint_S \sqrt{4-x^2-y^2} \, dA$, where $S$ is the first qua...

Multiple IntegralsDouble IntegralsPolar CoordinatesIntegrationCalculus
2025/5/25

The problem asks to reverse the order of integration of the iterated integral $\int_0^1 \int_{-y}^y ...

Iterated IntegralsChange of Order of IntegrationCalculus of Several Variables
2025/5/25

We are given the iterated integral $\int_{0}^{1} \int_{x^2}^{x^{1/4}} f(x, y) dy dx$. We need to cha...

Iterated IntegralsChange of Integration OrderCalculus
2025/5/25

We are given the iterated integral $\int_{-\pi/2}^{\pi/2} \int_{0}^{\theta} kr dr d\theta$. The goal...

Iterated IntegralsDouble IntegralsCenter of MassPolar CoordinatesCalculus
2025/5/25