We are given the iterated integral $\int_{-\pi/2}^{\pi/2} \int_{0}^{\theta} kr dr d\theta$. The goal is to sketch the lamina R, determine the density $\delta$, find the mass, and the center of mass.

AnalysisIterated IntegralsDouble IntegralsCenter of MassPolar CoordinatesCalculus
2025/5/25

1. Problem Description

We are given the iterated integral π/2π/20θkrdrdθ\int_{-\pi/2}^{\pi/2} \int_{0}^{\theta} kr dr d\theta. The goal is to sketch the lamina R, determine the density δ\delta, find the mass, and the center of mass.

2. Solution Steps

The iterated integral is given in polar coordinates. The density function is δ(r,θ)=k\delta(r, \theta) = k.
The limits of integration are:
π2θπ2-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}
0rθ0 \le r \le \theta
To sketch the region R, we note that the angle θ\theta ranges from π2-\frac{\pi}{2} to π2\frac{\pi}{2}, and for each angle θ\theta, the radius rr ranges from 00 to θ\theta. This region is a sector of a circle where the radius varies with the angle θ\theta.
The mass M of the lamina is given by the integral:
M=π/2π/20θkrdrdθM = \int_{-\pi/2}^{\pi/2} \int_{0}^{\theta} kr dr d\theta
First, we integrate with respect to rr:
0θkrdr=k[12r2]0θ=12kθ2\int_{0}^{\theta} kr dr = k \left[ \frac{1}{2}r^2 \right]_0^{\theta} = \frac{1}{2} k \theta^2
Now, we integrate with respect to θ\theta:
M=π/2π/212kθ2dθ=12k[13θ3]π/2π/2=16k[(π2)3(π2)3]=16k[π38+π38]=16k[π34]=kπ324M = \int_{-\pi/2}^{\pi/2} \frac{1}{2} k \theta^2 d\theta = \frac{1}{2}k \left[ \frac{1}{3}\theta^3 \right]_{-\pi/2}^{\pi/2} = \frac{1}{6}k \left[ (\frac{\pi}{2})^3 - (-\frac{\pi}{2})^3 \right] = \frac{1}{6} k \left[ \frac{\pi^3}{8} + \frac{\pi^3}{8} \right] = \frac{1}{6} k \left[ \frac{\pi^3}{4} \right] = \frac{k \pi^3}{24}
To find the center of mass (xˉ,yˉ)(\bar{x}, \bar{y}), we need to find the moments MxM_x and MyM_y.
Mx=yδ(r,θ)dA=π/2π/20θ(rsinθ)krdrdθ=kπ/2π/20θr2sinθdrdθM_x = \iint y \delta(r, \theta) dA = \int_{-\pi/2}^{\pi/2} \int_{0}^{\theta} (r \sin \theta) k r dr d\theta = k \int_{-\pi/2}^{\pi/2} \int_{0}^{\theta} r^2 \sin \theta dr d\theta
0θr2sinθdr=sinθ0θr2dr=sinθ[13r3]0θ=13θ3sinθ\int_{0}^{\theta} r^2 \sin \theta dr = \sin \theta \int_{0}^{\theta} r^2 dr = \sin \theta \left[ \frac{1}{3} r^3 \right]_0^{\theta} = \frac{1}{3} \theta^3 \sin \theta
Mx=kπ/2π/213θ3sinθdθ=k3π/2π/2θ3sinθdθM_x = k \int_{-\pi/2}^{\pi/2} \frac{1}{3} \theta^3 \sin \theta d\theta = \frac{k}{3} \int_{-\pi/2}^{\pi/2} \theta^3 \sin \theta d\theta
Since θ3sinθ\theta^3 \sin \theta is an even function,
π/2π/2θ3sinθdθ=20π/2θ3sinθdθ\int_{-\pi/2}^{\pi/2} \theta^3 \sin \theta d\theta = 2 \int_{0}^{\pi/2} \theta^3 \sin \theta d\theta
Using integration by parts:
θ3sinθdθ=θ3cosθ+3θ2cosθdθ=θ3cosθ+3(θ2sinθ2θsinθ+θcosθdθ)=θ3cosθ+3θ2sinθ6θcosθ+6sinθ\int \theta^3 \sin \theta d\theta = -\theta^3 \cos \theta + 3 \int \theta^2 \cos \theta d\theta = -\theta^3 \cos \theta + 3(\theta^2 \sin \theta - 2 \int \theta \cdot \sin \theta + \theta \cdot \cos \theta d\theta) = -\theta^3 \cos \theta + 3\theta^2 \sin \theta - 6\theta \cos \theta + 6 \sin \theta
0π/2θ3sinθdθ=[θ3cosθ+3θ2sinθ6θcosθ+6sinθ]0π/2=0+3(π2)2(1)0+6(1)0=3π24+6\int_{0}^{\pi/2} \theta^3 \sin \theta d\theta = [-\theta^3 \cos \theta + 3\theta^2 \sin \theta - 6\theta \cos \theta + 6 \sin \theta]_0^{\pi/2} = 0 + 3 (\frac{\pi}{2})^2 (1) - 0 + 6(1) - 0 = \frac{3\pi^2}{4} + 6
So, Mx=k3(2(3π24+6))=k3(3π22+12)=k(π22+4)M_x = \frac{k}{3} (2 (\frac{3\pi^2}{4} + 6)) = \frac{k}{3}(\frac{3\pi^2}{2} + 12) = k(\frac{\pi^2}{2} + 4)
yˉ=MxM=k(π22+4)kπ324=24(π22+4)π3=12π2+96π3\bar{y} = \frac{M_x}{M} = \frac{k(\frac{\pi^2}{2} + 4)}{\frac{k\pi^3}{24}} = \frac{24(\frac{\pi^2}{2} + 4)}{\pi^3} = \frac{12\pi^2 + 96}{\pi^3}
My=xδ(r,θ)dA=π/2π/20θ(rcosθ)krdrdθ=kπ/2π/20θr2cosθdrdθM_y = \iint x \delta(r, \theta) dA = \int_{-\pi/2}^{\pi/2} \int_{0}^{\theta} (r \cos \theta) k r dr d\theta = k \int_{-\pi/2}^{\pi/2} \int_{0}^{\theta} r^2 \cos \theta dr d\theta
0θr2cosθdr=cosθ0θr2dr=cosθ[13r3]0θ=13θ3cosθ\int_{0}^{\theta} r^2 \cos \theta dr = \cos \theta \int_{0}^{\theta} r^2 dr = \cos \theta \left[ \frac{1}{3} r^3 \right]_0^{\theta} = \frac{1}{3} \theta^3 \cos \theta
My=kπ/2π/213θ3cosθdθ=k3π/2π/2θ3cosθdθM_y = k \int_{-\pi/2}^{\pi/2} \frac{1}{3} \theta^3 \cos \theta d\theta = \frac{k}{3} \int_{-\pi/2}^{\pi/2} \theta^3 \cos \theta d\theta
Since θ3cosθ\theta^3 \cos \theta is an odd function, the integral from π/2-\pi/2 to π/2\pi/2 is

0. Therefore, $M_y = 0$, and $\bar{x} = \frac{M_y}{M} = 0$.

3. Final Answer

Density: δ(r,θ)=k\delta(r, \theta) = k
Mass: M=kπ324M = \frac{k \pi^3}{24}
Center of mass: (xˉ,yˉ)=(0,12π2+96π3)(\bar{x}, \bar{y}) = (0, \frac{12\pi^2 + 96}{\pi^3})

Related problems in "Analysis"

We need to find the mass $m$ and center of mass $(\bar{x}, \bar{y})$ of the lamina bounded by the cu...

CalculusDouble IntegralsCenter of MassIntegration by PartsLamina
2025/5/25

The problem asks us to find the mass $m$ and the center of mass $(\bar{x}, \bar{y})$ of the lamina b...

Multiple IntegralsCenter of MassDouble IntegralsDensity FunctionLamina
2025/5/25

The problem asks to find the mass $m$ and the center of mass $(\bar{x}, \bar{y})$ of a lamina bounde...

Multivariable CalculusDouble IntegralsCenter of MassLaminaDensity Function
2025/5/25

The problem asks us to find the value(s) of $a$ such that the function $f(x) = x^3 + ax^2 + 3x - 4$ ...

CalculusDerivativesIncreasing FunctionQuadratic InequalitiesDiscriminant
2025/5/25

The problem is to evaluate the double integral $\int_0^{\pi/2} [\frac{1}{2} \int_4^0 \sqrt{u} \, du ...

CalculusIntegrationDouble IntegralDefinite Integral
2025/5/25

We need to evaluate the double integral $\iint_S y \, dA$, where $S$ is the region in the first quad...

Double IntegralsPolar CoordinatesMultivariable Calculus
2025/5/25

We need to evaluate the double integral $\iint_S \sqrt{4-x^2-y^2} \, dA$, where $S$ is the first qua...

Multiple IntegralsDouble IntegralsPolar CoordinatesIntegrationCalculus
2025/5/25

The problem asks to reverse the order of integration of the iterated integral $\int_0^1 \int_{-y}^y ...

Iterated IntegralsChange of Order of IntegrationCalculus of Several Variables
2025/5/25

We are given the iterated integral $\int_{0}^{1} \int_{x^2}^{x^{1/4}} f(x, y) dy dx$. We need to cha...

Iterated IntegralsChange of Integration OrderCalculus
2025/5/25

We are asked to analyze the iterated integral $\int_0^2 \int_0^x k \, dy \, dx$. The goal is to sket...

Double IntegralsCenter of MassDensityIterated IntegralsCalculusMultivariable Calculus
2025/5/25