The problem asks us to find the mass $m$ and the center of mass $(\bar{x}, \bar{y})$ of the lamina bounded by the given curves and with the indicated density for problem number 4. The bounding curves are $y = 1/x$, $y = x$, $y = 0$, and $x = 2$. The density function is given by $\delta(x, y) = x$.

AnalysisMultiple IntegralsCenter of MassDouble IntegralsDensity FunctionLamina
2025/5/25

1. Problem Description

The problem asks us to find the mass mm and the center of mass (xˉ,yˉ)(\bar{x}, \bar{y}) of the lamina bounded by the given curves and with the indicated density for problem number

4. The bounding curves are $y = 1/x$, $y = x$, $y = 0$, and $x = 2$. The density function is given by $\delta(x, y) = x$.

2. Solution Steps

First, we need to find the intersection points of the curves. The intersection of y=xy=x and y=1/xy=1/x is found by setting x=1/xx = 1/x, which gives x2=1x^2 = 1, so x=1x = 1 (since x>0x>0). Thus, the intersection point is (1,1)(1, 1). The intersection of y=1/xy=1/x and x=2x=2 is at (2,1/2)(2, 1/2).
The mass mm is given by the double integral of the density function over the region:
m=Rδ(x,y)dAm = \iint_R \delta(x, y) \, dA.
In our case, m=1201/xxdydx+010xxdydxm = \int_1^2 \int_0^{1/x} x \, dy \, dx + \int_0^1 \int_0^x x \, dy \, dx.
Evaluating the inner integrals:
01/xxdy=x[y]01/x=x(1/x)=1\int_0^{1/x} x \, dy = x [y]_0^{1/x} = x(1/x) = 1
0xxdy=x[y]0x=x(x)=x2\int_0^x x \, dy = x [y]_0^x = x(x) = x^2
Now, evaluating the outer integrals:
121dx=[x]12=21=1\int_1^2 1 \, dx = [x]_1^2 = 2 - 1 = 1
01x2dx=[13x3]01=13\int_0^1 x^2 \, dx = [\frac{1}{3}x^3]_0^1 = \frac{1}{3}
So, m=1+13=43m = 1 + \frac{1}{3} = \frac{4}{3}.
Next, we find xˉ\bar{x} and yˉ\bar{y}.
xˉ=1mRxδ(x,y)dA=1mRx2dA\bar{x} = \frac{1}{m} \iint_R x \delta(x, y) \, dA = \frac{1}{m} \iint_R x^2 \, dA.
yˉ=1mRyδ(x,y)dA=1mRxydA\bar{y} = \frac{1}{m} \iint_R y \delta(x, y) \, dA = \frac{1}{m} \iint_R xy \, dA.
Rx2dA=1201/xx2dydx+010xx2dydx\iint_R x^2 \, dA = \int_1^2 \int_0^{1/x} x^2 \, dy \, dx + \int_0^1 \int_0^x x^2 \, dy \, dx
01/xx2dy=x2[y]01/x=x2(1/x)=x\int_0^{1/x} x^2 \, dy = x^2 [y]_0^{1/x} = x^2 (1/x) = x
0xx2dy=x2[y]0x=x3\int_0^x x^2 \, dy = x^2 [y]_0^x = x^3
12xdx=[12x2]12=12(41)=32\int_1^2 x \, dx = [\frac{1}{2} x^2]_1^2 = \frac{1}{2}(4 - 1) = \frac{3}{2}
01x3dx=[14x4]01=14\int_0^1 x^3 \, dx = [\frac{1}{4} x^4]_0^1 = \frac{1}{4}
Rx2dA=32+14=64+14=74\iint_R x^2 \, dA = \frac{3}{2} + \frac{1}{4} = \frac{6}{4} + \frac{1}{4} = \frac{7}{4}
xˉ=1m(74)=3474=2116\bar{x} = \frac{1}{m} (\frac{7}{4}) = \frac{3}{4} \cdot \frac{7}{4} = \frac{21}{16}.
RxydA=1201/xxydydx+010xxydydx\iint_R xy \, dA = \int_1^2 \int_0^{1/x} xy \, dy \, dx + \int_0^1 \int_0^x xy \, dy \, dx
01/xxydy=x[12y2]01/x=x2x2=12x\int_0^{1/x} xy \, dy = x [\frac{1}{2} y^2]_0^{1/x} = \frac{x}{2x^2} = \frac{1}{2x}
0xxydy=x[12y2]0x=x32\int_0^x xy \, dy = x [\frac{1}{2} y^2]_0^x = \frac{x^3}{2}
1212xdx=12[lnx]12=12(ln2ln1)=12ln2\int_1^2 \frac{1}{2x} \, dx = \frac{1}{2} [\ln x]_1^2 = \frac{1}{2} (\ln 2 - \ln 1) = \frac{1}{2} \ln 2
01x32dx=12[14x4]01=18\int_0^1 \frac{x^3}{2} \, dx = \frac{1}{2} [\frac{1}{4} x^4]_0^1 = \frac{1}{8}
RxydA=12ln2+18\iint_R xy \, dA = \frac{1}{2} \ln 2 + \frac{1}{8}
yˉ=1m(12ln2+18)=34(12ln2+18)=38ln2+332\bar{y} = \frac{1}{m} (\frac{1}{2} \ln 2 + \frac{1}{8}) = \frac{3}{4} (\frac{1}{2} \ln 2 + \frac{1}{8}) = \frac{3}{8} \ln 2 + \frac{3}{32}.

3. Final Answer

m=43m = \frac{4}{3}
xˉ=2116\bar{x} = \frac{21}{16}
yˉ=38ln2+332\bar{y} = \frac{3}{8} \ln 2 + \frac{3}{32}

Related problems in "Analysis"

We are given the following information: $F(x) = \int_{\sqrt{2}}^{\arcsin(\cos x)} f(\sin t) dt = \sq...

CalculusDefinite IntegralsFunctionsEvaluation of Integrals
2025/5/25

We need to find the mass $m$ and center of mass $(\bar{x}, \bar{y})$ of the lamina bounded by the cu...

CalculusDouble IntegralsCenter of MassIntegration by PartsLamina
2025/5/25

The problem asks to find the mass $m$ and the center of mass $(\bar{x}, \bar{y})$ of a lamina bounde...

Multivariable CalculusDouble IntegralsCenter of MassLaminaDensity Function
2025/5/25

The problem asks us to find the value(s) of $a$ such that the function $f(x) = x^3 + ax^2 + 3x - 4$ ...

CalculusDerivativesIncreasing FunctionQuadratic InequalitiesDiscriminant
2025/5/25

The problem is to evaluate the double integral $\int_0^{\pi/2} [\frac{1}{2} \int_4^0 \sqrt{u} \, du ...

CalculusIntegrationDouble IntegralDefinite Integral
2025/5/25

We need to evaluate the double integral $\iint_S y \, dA$, where $S$ is the region in the first quad...

Double IntegralsPolar CoordinatesMultivariable Calculus
2025/5/25

We need to evaluate the double integral $\iint_S \sqrt{4-x^2-y^2} \, dA$, where $S$ is the first qua...

Multiple IntegralsDouble IntegralsPolar CoordinatesIntegrationCalculus
2025/5/25

The problem asks to reverse the order of integration of the iterated integral $\int_0^1 \int_{-y}^y ...

Iterated IntegralsChange of Order of IntegrationCalculus of Several Variables
2025/5/25

We are given the iterated integral $\int_{0}^{1} \int_{x^2}^{x^{1/4}} f(x, y) dy dx$. We need to cha...

Iterated IntegralsChange of Integration OrderCalculus
2025/5/25

We are given the iterated integral $\int_{-\pi/2}^{\pi/2} \int_{0}^{\theta} kr dr d\theta$. The goal...

Iterated IntegralsDouble IntegralsCenter of MassPolar CoordinatesCalculus
2025/5/25