First, we need to find the intersection points of the curves. The intersection of y=x and y=1/x is found by setting x=1/x, which gives x2=1, so x=1 (since x>0). Thus, the intersection point is (1,1). The intersection of y=1/x and x=2 is at (2,1/2). The mass m is given by the double integral of the density function over the region: m=∬Rδ(x,y)dA. In our case, m=∫12∫01/xxdydx+∫01∫0xxdydx. Evaluating the inner integrals:
∫01/xxdy=x[y]01/x=x(1/x)=1 ∫0xxdy=x[y]0x=x(x)=x2 Now, evaluating the outer integrals:
∫121dx=[x]12=2−1=1 ∫01x2dx=[31x3]01=31 So, m=1+31=34. Next, we find xˉ and yˉ. xˉ=m1∬Rxδ(x,y)dA=m1∬Rx2dA. yˉ=m1∬Ryδ(x,y)dA=m1∬RxydA. ∬Rx2dA=∫12∫01/xx2dydx+∫01∫0xx2dydx ∫01/xx2dy=x2[y]01/x=x2(1/x)=x ∫0xx2dy=x2[y]0x=x3 ∫12xdx=[21x2]12=21(4−1)=23 ∫01x3dx=[41x4]01=41 ∬Rx2dA=23+41=46+41=47 xˉ=m1(47)=43⋅47=1621. ∬RxydA=∫12∫01/xxydydx+∫01∫0xxydydx ∫01/xxydy=x[21y2]01/x=2x2x=2x1 ∫0xxydy=x[21y2]0x=2x3 ∫122x1dx=21[lnx]12=21(ln2−ln1)=21ln2 ∫012x3dx=21[41x4]01=81 ∬RxydA=21ln2+81 yˉ=m1(21ln2+81)=43(21ln2+81)=83ln2+323.