The problem asks us to solve three equations for $x$, $y$, and $z$ respectively. a) $\frac{1.3 - 3x}{2} - \frac{1.8 - 8x}{1.2} = \frac{0.4 - 5x}{0.3}$ b) $1.2y - \frac{0.18y - 0.05}{0.5} = 0.4y + 8.9$ c) $\frac{0.02 - 2z}{0.02} - 7\frac{1}{2} = \frac{2(2 - 3z)}{0.01} - 2.5$

AlgebraLinear EquationsSolving EquationsAlgebraic Manipulation
2025/5/25

1. Problem Description

The problem asks us to solve three equations for xx, yy, and zz respectively.
a) 1.33x21.88x1.2=0.45x0.3\frac{1.3 - 3x}{2} - \frac{1.8 - 8x}{1.2} = \frac{0.4 - 5x}{0.3}
b) 1.2y0.18y0.050.5=0.4y+8.91.2y - \frac{0.18y - 0.05}{0.5} = 0.4y + 8.9
c) 0.022z0.02712=2(23z)0.012.5\frac{0.02 - 2z}{0.02} - 7\frac{1}{2} = \frac{2(2 - 3z)}{0.01} - 2.5

2. Solution Steps

a)
1.33x21.88x1.2=0.45x0.3\frac{1.3 - 3x}{2} - \frac{1.8 - 8x}{1.2} = \frac{0.4 - 5x}{0.3}
Multiply both sides by 6 (LCM of 2, 1.2, 0.3):
3(1.33x)5(1.88x)=20(0.45x)3(1.3 - 3x) - 5(1.8 - 8x) = 20(0.4 - 5x)
3.99x9+40x=8100x3.9 - 9x - 9 + 40x = 8 - 100x
31x5.1=8100x31x - 5.1 = 8 - 100x
131x=13.1131x = 13.1
x=13.1131=110=0.1x = \frac{13.1}{131} = \frac{1}{10} = 0.1
b)
1.2y0.18y0.050.5=0.4y+8.91.2y - \frac{0.18y - 0.05}{0.5} = 0.4y + 8.9
Multiply both sides by 0.5:
0.5(1.2y)(0.18y0.05)=0.5(0.4y)+0.5(8.9)0.5(1.2y) - (0.18y - 0.05) = 0.5(0.4y) + 0.5(8.9)
0.6y0.18y+0.05=0.2y+4.450.6y - 0.18y + 0.05 = 0.2y + 4.45
0.42y+0.05=0.2y+4.450.42y + 0.05 = 0.2y + 4.45
0.22y=4.40.22y = 4.4
y=4.40.22=44022=20y = \frac{4.4}{0.22} = \frac{440}{22} = 20
c)
0.022z0.02712=2(23z)0.012.5\frac{0.02 - 2z}{0.02} - 7\frac{1}{2} = \frac{2(2 - 3z)}{0.01} - 2.5
0.022z0.027.5=46z0.012.5\frac{0.02 - 2z}{0.02} - 7.5 = \frac{4 - 6z}{0.01} - 2.5
Multiply by 0.02:
(0.022z)0.02(7.5)=2(46z)0.02(2.5)(0.02 - 2z) - 0.02(7.5) = 2(4 - 6z) - 0.02(2.5)
0.022z0.15=812z0.050.02 - 2z - 0.15 = 8 - 12z - 0.05
2z0.13=7.9512z-2z - 0.13 = 7.95 - 12z
10z=8.0810z = 8.08
z=8.0810=0.808z = \frac{8.08}{10} = 0.808

3. Final Answer

a) x=0.1x = 0.1
b) y=20y = 20
c) z=0.808z = 0.808