Factor the expression $-x^3 - 125$.

AlgebraPolynomial FactorizationSum of CubesAlgebraic Manipulation
2025/6/6

1. Problem Description

Factor the expression x3125-x^3 - 125.

2. Solution Steps

First, factor out a -1 from the expression:
x3125=(x3+125)-x^3 - 125 = -(x^3 + 125)
We recognize that x3+125x^3 + 125 is a sum of cubes, where x3=a3x^3 = a^3 and 125=53125 = 5^3. Therefore, a=xa = x and b=5b = 5.
Recall the sum of cubes formula:
a3+b3=(a+b)(a2ab+b2)a^3 + b^3 = (a+b)(a^2 - ab + b^2)
Applying the sum of cubes formula to x3+53x^3 + 5^3, we get:
x3+53=(x+5)(x25x+25)x^3 + 5^3 = (x+5)(x^2 - 5x + 25)
Therefore,
(x3+125)=(x+5)(x25x+25)=(x5)(x25x+25)-(x^3 + 125) = -(x+5)(x^2 - 5x + 25) = (-x-5)(x^2 - 5x + 25) or (x+5)(x25x+25)-(x+5)(x^2-5x+25)

3. Final Answer

(x+5)(x25x+25)-(x+5)(x^2-5x+25)