The problem is to factor the expression $8x^6y^{12} + 27$.

AlgebraFactoringSum of CubesPolynomials
2025/6/6

1. Problem Description

The problem is to factor the expression 8x6y12+278x^6y^{12} + 27.

2. Solution Steps

The expression 8x6y12+278x^6y^{12} + 27 is a sum of cubes. We can rewrite it as (2x2y4)3+(3)3(2x^2y^4)^3 + (3)^3.
The sum of cubes formula is:
a3+b3=(a+b)(a2ab+b2)a^3 + b^3 = (a + b)(a^2 - ab + b^2)
Let a=2x2y4a = 2x^2y^4 and b=3b = 3.
Then a3=(2x2y4)3=8x6y12a^3 = (2x^2y^4)^3 = 8x^6y^{12} and b3=33=27b^3 = 3^3 = 27.
Applying the sum of cubes formula, we have:
8x6y12+27=(2x2y4+3)((2x2y4)2(2x2y4)(3)+(3)2)8x^6y^{12} + 27 = (2x^2y^4 + 3)((2x^2y^4)^2 - (2x^2y^4)(3) + (3)^2)
=(2x2y4+3)(4x4y86x2y4+9)= (2x^2y^4 + 3)(4x^4y^8 - 6x^2y^4 + 9)

3. Final Answer

(2x2y4+3)(4x4y86x2y4+9)(2x^2y^4 + 3)(4x^4y^8 - 6x^2y^4 + 9)