We are given the equation $\frac{x+23}{25} + \frac{x+30}{19} + \frac{x+27}{54} = 6$ and we need to solve for $x$.

AlgebraEquationsLinear EquationsSolving Equations
2025/6/7

1. Problem Description

We are given the equation x+2325+x+3019+x+2754=6\frac{x+23}{25} + \frac{x+30}{19} + \frac{x+27}{54} = 6 and we need to solve for xx.

2. Solution Steps

The equation is x+2325+x+3019+x+2754=6\frac{x+23}{25} + \frac{x+30}{19} + \frac{x+27}{54} = 6.
We can rewrite the equation as
x25+2325+x19+3019+x54+2754=6\frac{x}{25} + \frac{23}{25} + \frac{x}{19} + \frac{30}{19} + \frac{x}{54} + \frac{27}{54} = 6.
Combining the terms with xx, we get
x(125+119+154)+2325+3019+2754=6x (\frac{1}{25} + \frac{1}{19} + \frac{1}{54}) + \frac{23}{25} + \frac{30}{19} + \frac{27}{54} = 6.
We have 2754=12\frac{27}{54} = \frac{1}{2}.
So, x(125+119+154)=6(2325+3019+12)x(\frac{1}{25} + \frac{1}{19} + \frac{1}{54}) = 6 - (\frac{23}{25} + \frac{30}{19} + \frac{1}{2}).
We have 125+119+154=19×54+25×54+25×1925×19×54=1026+1350+47525650=285125650\frac{1}{25} + \frac{1}{19} + \frac{1}{54} = \frac{19 \times 54 + 25 \times 54 + 25 \times 19}{25 \times 19 \times 54} = \frac{1026 + 1350 + 475}{25650} = \frac{2851}{25650}.
We have 2325+3019+12=23×38+30×50+19×2525×19×2=874+1500+475950=2849950\frac{23}{25} + \frac{30}{19} + \frac{1}{2} = \frac{23 \times 38 + 30 \times 50 + 19 \times 25}{25 \times 19 \times 2} = \frac{874 + 1500 + 475}{950} = \frac{2849}{950}.
So, x285125650=62849950=6×9502849950=57002849950=2851950x \frac{2851}{25650} = 6 - \frac{2849}{950} = \frac{6 \times 950 - 2849}{950} = \frac{5700 - 2849}{950} = \frac{2851}{950}.
Thus, x=2851950×256502851=25650950=256595=27x = \frac{2851}{950} \times \frac{25650}{2851} = \frac{25650}{950} = \frac{2565}{95} = 27.
So, we have x=27x=27.
Now, we can check this:
27+2325+27+3019+27+2754=5025+5719+5454=2+3+1=6\frac{27+23}{25} + \frac{27+30}{19} + \frac{27+27}{54} = \frac{50}{25} + \frac{57}{19} + \frac{54}{54} = 2 + 3 + 1 = 6.
So the answer is correct.

3. Final Answer

27